Obligatory transactions on a specified date at a predetermined price
A bond future is a contractual obligation for the contract holder to purchase or sell a bond on a specified date at a predetermined price. Bond futures are traded on the Johannesburg Stock Exchange’s Bond Derivative Market and the prices and dates are determined at the time the future is purchased.

The predetermined price is derived as follows:
- It is determined by supply and demand in the same way as a spot price
- The buyer (long position) of a bond future is obligated to purchase the underlying bond at the agreed price, on expiry of the future
- The seller (short position) of a bond future is obligated to deliver the underlying bond at the agreed price, on expiry of the future

Bond futures are traded for hedging, speculative, gearing and arbitraging purposes. The holders of the bond futures need not physically deliver/settle if they close the position (contract) prior to the predetermined delivery date.

Bond futures offer the opportunity to gain similar exposure to interest rates as spot bonds but at a fraction of the cost. There is no payment of the principal or holding of the physical bond, unless the future is held to expiry.

How do Bond Futures work?

The JSE’s futures on bonds are conventional, fully margined, physically settled, futures contracts defined on R 100,000 nominal of each of the exchange’s spot bonds.

The near, middle and far contracts are listed at any time. Longer dated contracts may be listed from time to time if there is demand.

The contracts trade on yield to maturity for settlement on their delivery dates. They are physically settled on the t+3 date of their expiry date. The settlement price is found from their closing yield to maturity, using the standard bond pricing formula.

There is a daily explicit mark-to-market to the value determined from the bond pricing formula at the day’s mark-to-market yield to maturity.

Bond Futures contracts offered

The JSE offers bond futures contracts on the underlying government and corporate bonds.

Expiry months and dates
Midday on the first business Thursday of February, May, August and November.

Minimum contract size
1 contract = R100 000 nominal of the underlying bond.
How are Bond Futures quoted

The JSE quotes all bond futures in the same way as the underlying spot bond market, namely on a yield-to-maturity (YTM) basis. The price is determined from the yield using the standard bond pricing formula.

Settlement

Bond futures contracts on the JSE are physically settled. This means that physical delivery of the bond will take place. Delivery takes place on a t + 3 cycle.

Important dates

- On the **Deal Date (D₀)**, a futures contract is entered into, in terms of which a specific bond will be traded at a set future date, at a price which is set today (the all-in price).
- On the **Futures Expiry Date (D₁)**, the underlying bond is traded for settlement 3 days later (t+3).
- Delivery of the bond takes place on the **Settlement Date (D₂)**, after which ordinary bond cashflows are transferred.

Expiry prices

The prices at which the bond future contracts expire are provided by the exchange. They are determined by a mark-to-market process executed at 12 o’clock on the expiry date.

Margining

The JSE’s clearing house becomes the counterparty to each trade once each transaction has been matched and confirmed. The clearing house therefore ensures that settlement takes place on each trade. To protect itself from non-performance, JSE Clear employs a process known as margining. This mechanism entails initial margin and variation margin.

Deals in bond futures, in common with all the JSE’s standardised derivative instruments are risk managed and margined, whether transacted on-screen as central order book trades, or dealt off-screen as report-only trades. All components of risk positions are guaranteed for settlement.

Initial margin

Positions in bond futures are margined to mitigate risk. The margin applied is a measure of the risk of a participant’s futures’ position on the exchange. This risk measure is obtained by analysing the effect of possible yield curve changes on the position’s cashflows, and hence on its value. Margin is due to cover the largest negative value that the position is likely to encounter. This is known as **Initial Margin** collected on the morning after the trade date (t+1).

JSE Clear employs a process known as margining. This mechanism entails initial margin and variation margin.
Margin deposited at the JSE earns market related interest. Margin is returned via the clearing member to the trading participant when the position is closed out or when the contract expires. Interest on margin is returned at the end of the month.

Variation margin

Bond futures are marked-to-market on a daily basis and the profit/loss that results from this is known as **Variation Margin**. This means that profits and losses are realised and paid over in cash each day.

Daily settlement on futures has a small effect on the performance of a hedge because the payoff from the futures contract is realised daily throughout the life of the hedge rather than all at the end.

E.g. Investor is long one MAY13 R186 future contracts (nominal R100,000)

- On Monday, contract valued at 7.51006% (price = 129.15820)

 \[\text{Value of position} = 100,000 \times 129.15820/100 = \text{R129,158.20}\]

- On Tuesday, contract valued at 7.52066% (price = 129.05972)

 \[\text{Value of position} = 100,000 \times 129.05972/100 = \text{R129,059.70}\]

MTM LOSS = R129,059.70 – R 129,158.00 = R 98.48

The investor therefore makes a cash payment of R98.48

This MTM loss is known as variation margin.

Contracts are automatically closed out on expiry

All contracts that have not been closed out or rolled over before expiry will go through the expiration process. All contracts held on expiry will automatically be closed out by the Exchange. If the investor is long a bond future and holds it till expiry he will receive the physical bond and the counterparty who is short will need to deliver the bond.

How to close a trade position

Bond Future contracts are closed out by entering an equal but opposite transaction. For example, if an investor had entered a long bond future contract, the investor would close out the trade by selling the contract, i.e. by entering into a short bond future. The Exchange charges trading fees for all contracts that are closed out.

How to roll over a trade position

All investors who wish to hold their positions beyond the expiry date will be required to roll their positions over into the next expiry date. In other words all investors holding a May contract will need to roll their positions into the August contract. Investors will need to close out their positions (as explained) and subsequently enter into the next contract expiry. In other words, if an investor was long a May contract, the investor would have to short the May contract and subsequently enter into a long August contract. The benefit to the investor is that the same exposure is maintained. The exchange offers discounted trade fees for all positions that are rolled.
Market participants

There are four categories of participants in the bond futures market:

- **Hedgers**
- **Arbitrageurs**
- **Investors**
- **Speculators**

Hedgers use bond futures to protect an existing portfolio against adverse interest rate movements. Hedgers therefore seek to reduce risk. Hedgers have a real interest in the underlying spot bonds and use futures as a way of preserving their value.

Arbitrageurs profit from price differentials of similar products in different markets e.g. price differentials between the spot bonds and the futures.

Investors use bond futures to enhance the long-term performance of a portfolio of assets.

Speculators use bond futures in the hopes of making profit on short-term movements in prices. Speculators therefore seeks to enhance risk with the aim of making a profit. Speculators have no interest in the underlying spot bond market other than taking a view on the future direction of the bond's price.

Advantages of trading futures

- **Short sell**: Investors can short sell an asset they do not physically own at the time.
- **Low transaction costs**: Sliding scale
- **Credit risk**: Very little if any credit risk as trades are guaranteed by the clearing member.

Pricing

Bond futures prices are quoted in terms of yield to maturity (YTM) for settlement on the delivery date of the underlying bond. Using standard bond pricing techniques, this yield is converted to the All-In-Price (AIP) which is the price that will be paid for the bond on futures-expiry.

The futures price of a bond is the bond’s current spot price plus the cost of carry necessary to hold the bond to the future delivery date. Cost of carry is the interest on funds borrowed to purchase the bond and hold it until expiry and delivery.

\[
\text{Futures Price = Spot Price + Cost of Carry – Income from the Coupons}
\]

Gearing

Futures settle in arrears and thus investors only need to post initial margin upfront (the margin is calculated as the largest possible loss in one day on a position & is payable as a good faith deposit). Investors can thus take on larger positions than otherwise possible in the physical spot market. Investors can thus short sell an asset they do not physically own at the time.

The ability to take on larger positions will encourage both long-term buyers and those with a short-term view to participate in the market, where as in the cash market those with a short-term view will not want to participate as they will have to hold the physical bond.
Example of cash flows on a long Bond Futures position

The table below highlights the daily cash flows that will be debited or credited to the investors trading account during the period 20/07/2012 to 31/07/2012.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R186 1 Nov 2012 Trade yield</td>
<td>7.26013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R186 1 Nov 2012 Trade all-in-price</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consideration</td>
<td>R132,476.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial margin</td>
<td>(R2,980.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consideration</td>
<td>R132,363.71</td>
<td>R130,653.95</td>
<td>R129,343.45</td>
<td>R130,897.63</td>
<td>R131,652.21</td>
<td>R131,872.43</td>
<td>R129,378.24</td>
<td>R130,817.98</td>
</tr>
<tr>
<td>Variation margin (Profit / Loss)</td>
<td>R96.07</td>
<td>(R1,709.76)</td>
<td>(R1,310.50)</td>
<td>R1,554.18</td>
<td>R754.58</td>
<td>R220.22</td>
<td>(R2,494.19)</td>
<td>R1,439.74</td>
</tr>
<tr>
<td>Cash Flow for the day</td>
<td>(R2,883.93)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20/07/2012

The investor decides to enter into a long R186 bond future expiring in Nov 2012 at yield of 7.26013 and a price of 132.26764.

At the end of the day the mark-to-market is determined to be 132.36371. His profit will thus be:

\[(132.36371/100 \times 100,000) - (132.47639/100 \times 100,000) = \text{R}\ 96.07.\]

However, the investor is also required to pay initial margin which is determined on the day to be R2,980. The total cash flow for the day is thus (R2,980) + 96.07 = (R2,883.93) which the investor needs to pay.

It is important to note that initial margin will be returned to him when the position is closed out or else when the contract expires.

23/07/2012

The closing price is determined to be 130.65395 for 23/07/2012.

The Profit/(Loss) for the day is determined to be:

\[(130.65395/100 \times 100,000) - (132.36371/100 \times 100,000)\]

\[= (R1,709.76)\] which the investor will need to pay to the exchange and is known as variation margin.

Variation margin is calculated daily from the Mark-to-Market (Closing Prices) as above and results in an actual cash flow to/from the investor until the position is closed out or the contract expires.
Spot-Futures price convergence

As the delivery approaches, the futures/forward price will eventually converge to the spot price of the underlying asset. If this was not the case there would be clear arbitrage opportunities.

Futures

FuturesPrice

Cash Price

Basis

The difference between a security’s cash/spot and futures prices is known as the “cash-futures basis”. The Basis reflects a number of factors, collectively called “Carry Costs” (e.g. interest differential). The Basis narrows as the bond futures contract nears expiry. This is known as basis convergence.

While futures trading can eliminate price level risk, it cannot eliminate the risk that the basis will change unfavourably and unpredictably during the lifetime of the hedge. The cash-futures basis is subject to many influences, like general market factors and interest rates. In certain financial markets, basis reflects the difference between long-term and short-term interest rates.

The basis is used to determine:

- The best time to buy or sell
- When to use the futures market to hedge a purchase or sale
- The futures month in which to place a hedge
- When to accept an offer or bid

Short hedge

A short hedge involves a short (sell) position in a futures contract. It is appropriate when the hedger already owns the underlying asset and expects to sell it at some time in the future. This strategy can also be used when the bond is not owned right now but will be owned at some time in the future.
Long hedge

A long hedge involves taking a long futures position in a futures contract. It is appropriate when an investor knows he will have to buy a bond at some point in the future and wants to lock in a price now.

Duration management strategy

Duration is an important concept when hedging interest rate risk.

Futures are used to manage the duration of a portfolio in situations where active deviations from benchmark neutral positions are desired.

For example, a portfolio manager may be of the opinion that interest rates are likely to rise and thus wish to decrease the duration of his/her portfolio.

This enables the hedger to assess the sensitivity of the bond portfolio/futures price to small parallel shifts in the yield curve.

Financial institutions attempt to hedge themselves against interest rate risk by ensuring that the average duration of their assets equals the average duration of their liabilities (liabilities can be regarded as short positions in bonds). This strategy is known as duration matching or portfolio immunisation.

When implemented, it ensures that a small parallel shift in interest rates will have little effect on the value of the portfolio of assets and liabilities. The gain (loss) on the assets should offset the loss (gain) on the liabilities.

The number of futures contracts necessary to protect the bond portfolio against small parallel shifts in the yield curve can therefore be calculated.

The hedge performance is liable to be poor if the duration of the bond underlying the futures contract differs markedly from the duration of the asset being hedged.

Hedging positions in a bond portfolio

An investor with a portfolio of long bond positions may need to protect the portfolio against anticipated increasing interest rates.

Sell bond futures – thus if rates increase, decline in value of bonds is offset by the increase in value of the short position.

Go long bond index futures contract of the risk faced by the investor is related to the performance of the whole bond market. The investor can neutralise this risk with a long position in a bond index futures contract.
Bond Futures specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>Futures: Futures on bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underlying bonds</td>
<td>Bonds listed by the Exchange (Government and corporate bonds)</td>
</tr>
<tr>
<td>Expiry dates and times</td>
<td>Midday on first business Thursday of February, May, August and November</td>
</tr>
<tr>
<td>Codes</td>
<td>e.g. 02 May 13 R186</td>
</tr>
<tr>
<td>Listing programme</td>
<td>Near, middle and far contracts</td>
</tr>
<tr>
<td></td>
<td>Specials on demand</td>
</tr>
<tr>
<td>Unit of trading and minimum allocation</td>
<td>1 contract = R100,000 nominal of underlying bond</td>
</tr>
<tr>
<td>Quotations</td>
<td>Yield to maturity (generally nacs) for settlement on the delivery date</td>
</tr>
<tr>
<td>Minimum quotation movement</td>
<td>$\frac{1}{1000}$ of a point</td>
</tr>
<tr>
<td>Settlement</td>
<td>Delivery of the physical bond</td>
</tr>
<tr>
<td>Delivery dates</td>
<td>t+3 of expiry date</td>
</tr>
<tr>
<td>Settlement price (for daily mark-to-market and on expiry)</td>
<td>All-in price calculated from the contract’s closing yield to maturity for settlement on the delivery date, using the Bond Pricing Formula</td>
</tr>
<tr>
<td>Mark-to-market</td>
<td>Explicit daily</td>
</tr>
<tr>
<td>Margining</td>
<td>Bond future positions are risk managed and margined</td>
</tr>
</tbody>
</table>

Note: Contract specifications are subject to change from time to time.