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Abstract 
 
According to the classical theory based on the work by Black, Scholes and Merton, the implied 
volatility of an option should be independent of its strike and expiration date. However, traded 
option data sketch a different picture. The structure of volatilities for different strikes for a given 
maturity tends to have the shape of a ``smile'' or a ``skew''. Every expiry has a different skew and 
plotting all skews together gives a 3D image referred to as the volatility surface. This surface is 
dynamic and changes over time. 
 
The exchange traded index option market in South Africa has seen tremendous growth during the 
last couple of years. The biggest liquidity is in options on the near and middle Alsi future contracts. 
Alsi futures are listed future contracts on the FTSE/JSE Top40 index, the most important and 
tradable equity index in South Africa. OTC and listed options trade on a skew and most market 
makers have implemented their own proprietary skew generators. Clearing houses also use the 
volatility surface in estimating the initial margins for options. 
 
In this paper we show how to generate the implied volatility surface by fitting a quadratic 
deterministic function to implied volatility data from Alsi index options traded on Safex. This market 
is mostly driven by structured spread trades, and very few at-the-money options ever trade. It is 
thus difficult to obtain the correct at-the-money volatilities needed by the exchange for their mark-to-
market and risk management processes. We further investigate the term structure of at-the-money 
volatilities and show how the at-the-money implied volatilities can be obtained from the same 
deterministic model. This methodology leads to a no-spread arbitrage and robust market related 
volatility surface that can be used by option traders and brokers in pricing structured option trades. 
 
 
 
 
 
 
 
 
 
 
 



Constructing a South African Implied Volatility
Surface from Exchange Traded Data

Date: 10 November 2009
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Abstract

According to the classical theory based on the work by Black, Scholes and
Merton, the implied volatility of an option should be independent of its strike
and expiration date. However, traded option data sketch a different picture.
The structure of volatilities for different strikes for a given maturity tends to
have the shape of a “smile” or a “skew”. Every expiry has a different skew
and plotting all skews together gives a 3D image referred to as the volatility
surface. This surface is dynamic and changes over time.

The exchange traded index option market in South Africa has seen tremen-
dous growth during the last couple of years. The biggest liquidity is in options
on the near and middle Alsi future contracts. Alsi futures are listed future
contracts on the FTSE/JSE Top40 index, the most important and tradable
equity index in South Africa. OTC and listed options trade on a skew and
most market makers have implemented their own proprietary skew generators.
Clearing houses also use the volatility surface in estimating the initial margins
for options.

In this paper we show how to generate the implied volatility surface by
fitting a quadratic deterministic function to implied volatility data from Alsi
index options traded on Safex1. This market is mostly driven by structured
spread trades, and very few at-the-money options ever trade. It is thus difficult
to obtain the correct at-the-money volatilities needed by the exchange for their
mark-to-market and risk management processes. We further investigate the
term structure of at-the-money volatilities and show how the at-the-money
implied volatilities can be obtained from the same deterministic model. This
methodology leads to a no-spread arbitrage and robust market related volatility
surface that can be used by option traders and brokers in pricing structured
option trades.
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1 Introduction

Traders say volatilities are “skewed” when options of a given asset trade at increas-
ing or decreasing levels of implied volatility as you move through the strikes. The
volatility skew (smile) was first observed and mentioned by Black and Scholes in a
paper that appeared in 1972 [BS 72]. It was then empirically described in 1979 by
Macbeth and Mervile [MM 79]. At that point in time it wasn’t pronounced but the
market crash of October 1987 changed all of that.

If one studies option prices before and after October 1987, one will see a distinct
break. Option prices begin to reflect an ”option risk premium” — a crash premium
that comes from the experiences traders had in October 1987. After the crash, the
demand for protection rose and that lifted the prices for puts; especially out-the-
money puts. To afford protection, investors would sell out-the-money calls. There
is thus an over supply of right hand sided calls and demand for left hand sided puts
— alas the skew. In fact, out-the-money put options usually trade at a premium to
out-the-money calls.

The market also observed that near dated at-the-money options usually trade at
higher volatilities than far dated options. This is called the at-the-money term struc-
ture of volatility, reflecting the effect that volatility reverts to a long range mean;
volatility is mean reverting. A model that generates a volatility surface from traded
option data must be able to capture these stylised facts. If so, we will obtain reliable
valuations and sound risk measures. An accurate volatility surface is also very im-
portant to futures clearing houses. The margin requirements for options are based on
the volatility surface. If the surface is not accurate or not reflective of the market, it
will result in margin requirements that might not protect the clearing house against
the current risk in the market.

The smile phenomenon has spread to commodity options, interest-rate options,
currency options and almost every other option market. Since the Black-Scholes
model cannot account for the skew, option traders and risk managers began using
more complex models to value and manage options. Some of these methods include
generating a market related implied volatility surface that accurately reflects the
correct option values.

In this paper we focus on two important aspects of volatility: we firstly introduce
a simple quadratic deterministic volatility function that we fit to traded data giving
a robust traded implied volatility surface (IVS). Secondly (and independent from the
first step), we use a similar function to obtain the fair at-the-money (ATM) term
structure of volatility (TSV).

An aspect that always rears its head in developing markets is the impact of market
efficiency i.e., liquidity. In South Africa, there are very few ATM index option trades.
The market mostly trade spread structures with strikes not too far from the ATM.
This means that deep in-the-money (ITM) and deep out-the-money (OTM) contracts
rarely trades. This has an impact on the accuracy of volatilities in the wings. We
show how to take all of these aspects into consideration when generating the IVS and
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ATM term structure of volatility.
This paper is organised as follows: in §2 we look at the general dynamics of

volatility setting the tone for the complexities in modelling volatility. In §4 we briefly
introduce the stochastic and non-parametric methods used to capture the dynamics
of volatility. Then, in §5 we delf into the deterministic approaches. We look at the
history of this approach and give some reasons for why this methodology is suitable
to the South African market. In this part of the paper we introduce the quadratic
function used to generate the volatility surface and also the decaying function used
to generate the at-the-money term structure of volatility. In §6 we discuss the im-
plementation and optimisation of the quadratic and term structure functions. Full
details of the optimisations are given in some Appendixes.

2 Volatility Dynamics

The Black & Scholes option pricing model assumes that volatility is constant [Ko 03].
However, a very interesting working paper by David Shimko reported very high neg-
ative correlations during the period 1987-1989 between changes in implied volatilities
on S&P 100 index options and the concurrent return of the index — a correlation
which should be zero according to the Black-Scholes formula [Sh 91].

It is now an accepted fact2, that when equity prices go up (down) volatility usually
goes down (up); there is an inverse relationship between volatility and the underlying
asset price. We show this in Figure 1 where we plot the FTSE/JSE Top40 index
together with the 1 month historical volatility. The Black & Scholes option model
with constant volatility will therefore produce option prices that do not match those
traded in the market. This deficiency of the Black & Scholes model arises because
Black & Scholes assumed a constant volatility in deriving their option pricing formula
[Ko 02]. It is also argued that the source of this Black-Scholes deficiency can be
attributed to the fact that the distribution of equity price levels at expiry is not
lognormal [DFW 98].

But what is “volatility”? A price series or an economic indicator that changes a
lot and swings wildly is said to be “volatile”. This simple and intuitive concept is the
cause of many difficulties in finance. Unlike many other market parameters which can
be observed directly, volatility has to be estimated. This is difficult, if not impossible,
because we cannot say that volatility is necessarily stochastic or that it conforms to
any mathematical model. All we know is that the evolution of volatility is uncertain.
An accurate estimate of volatility is, however, crucial in many applications, including
risk measurement and management as well as option pricing and hedging [Ko 01].

2Even Black wrote in 1976 “I have believed for a long time that stock returns are related to
volatility changes. When stocks go up, volatility seems to go down; and when stocks go down,
volatility seems to go up.” ([Bl 76], p. 177)

4



Figure 1: FTSE/JSE Top40 index level and the 3 month historical volatility during
the period, June 2008 through October 2009. The plot shows the negative correlation
that usually exists between the index level and the volatility.

3 Margin Requirements by Clearing Houses

Margining is an important part of the risk management process utilised by an ex-
change. To minimize risk to the exchange, derivative traders must post margin. Mar-
gin helps derivative exchanges to avoid credit and market risk, i.e. the chance of one
or more counterparties to a trade, defaulting on their obligations. They accomplish
this in two ways. Firstly, all trades on an exchange are settled or “cleared” through a
clearinghouse which may be a separate legal entity to the exchange itself. The JSE’s
clearing house is SAFCOM. The clearinghouse acts as the principal counterparty to
all trades through an exchange. Thus, it interposes itself as the ’buyer to every seller’
and the ’seller to every buyer’ — known as novation. Through novation Safcom guar-
antees to its members the financial performance of all contracts traded. SAFCOM
becomes the guarantor of all derivative transactions allowing members participants
to deal freely with each other without counterparty credit risk constraints.

Secondly, exchanges employ a system of margining. The exchange then also es-
timates what losses are possible in the future — usually 1 trading day. Participants
are required to lodge margins with the exchange which are sufficient to cover these
possible future losses — this is called initial margin. Should the losses eventuate and
the participant be unable to bear them, the margin is available to the exchange to
meet the shortfall. The initial margin may be reduced or increased based on changes
in the margin parameters. There are two stages to estimating possible future losses
and the initial margin requirements:
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• The exchange does a statistical analysis of historical market moves and sub-
jective assessments of the state of the market. They express the maximum
anticipated price and volatility moves between the present and the next mark-
to-market day. This is similar to a Value at Risk (VAR) calculation.

• Secondly, the exchange re-values each position at this maximum anticipated
price and volatility at the next mark-to-market day. The margin covers this
maximum conceivable mark-to-market loss that the position (entire portfolio)
could suffer.

Initial margin requirements for options are thus directly linked to the volatility
surface. An accurate market surface will lead to initial margins that reflect the current
risks in the market. An inaccurate or stale surface impose “unaccounted” risks onto
the clearing house. Having an accurate market related implied volatility surface is
extremely important to a clearing house’s risk management processes.

4 Stochastic and Nonparametric Volatility Models

The idea that the price of a financial instrument might be arrived at using a complex
mathematical formula is relatively new. This idea can be traced back to the seminal
paper by Myron Scholes and Fischer Black [BS 73]. We now live in a world where it
is accepted that the value of certain illiquid derivative securities can be arrived at on
the basis of a model (this is the practise of marking-to-model) [Re 06].

In order to implement these models, practitioners paid more and more attention
to, and began to collect, direct empirical market data often at a transactional level.
The availability of this data created new opportunities. The reasonableness of a
model’s assumptions could be assessed and the data guided many practitioners in the
development of new models. Such market data led researchers to models whereby the
dynamics of volatility could be studied and modeled.

Stochastic, empirical, nonparametric and deterministic models have been studied
extensively. In this section we will give a brief overview of the first 3 models before
we delf into the deterministic model in greater detail in §5.

4.1 Stochastic Models

Black & Scholes defined volatility as the standard deviation because it measures the
variability in the returns of the underlying asset [BS 72]. They determined the his-
torical volatility and used that as a proxy for the expected or implied volatility in the
future. Since then the study of implied volatility has become a central preoccupation
for both academics and practitioners [Ga 06]. Volatility changes over time and seem
to be driven by a stochastic process. This can be seen in Figure 2 where we plot the 3
month rolling volatility for the FTSE/JSE Top40 index. Also evident from this plot
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is the mean reversion phenomenon. The 3 month long term mean volatility of this
index is 21.38%.

Figure 2: FTSE/JSE Top40 3 month historical volatility during the period, June
1995 through October 2009. The plot shows that volatility is not constant and seems
to be stochastic in nature. Also evident is the phenomenon of mean reversion.

The stochastic nature of volatility led researchers to model the volatility surface
in a stochastic framework. These models are useful because they explain in a self-
consistent way, why options with different strikes and expirations have different Black
& Scholes implied volatilities. Another feature is that they assume realistic dynamics
for the underlying [Le 00]. The stochastic volatility models that we briefly appraise
are the popular Heston model [He 93] and the well-known SABR model by Hagan et
al. [HK 02].

In the Heston model, volatility is modelled as a long-term mean reverting process.
The Heston model fits the long-term skews well, but fails at the shorter expirations
[Ga 09]. Heston models the volatility surface as a joint dynamic in time and strike
space. A viable alternative to the Heston model is the well known SABR model
[We 05]. Here, volatility is modelled as a short term process by assuming that the
underlying is some normally distributed variable. The SABR model assumes that
strike and time to expiration dynamics are disjoint, i.e. the skews and term structure
of the skews are calibrated separately. This model works better for shorter expirations
but because volatilities do not mean revert in the SABR model, it is only good for
short expirations. Another problem with the SABR model3 is that its parameters are

3The SABR stochastic volatility model has the at-the-money volatility as input, which means
that in an illiquid options market, the SABR generated market surface accuracy will have additional
errors arising from the illiquidity of the at-the-money options trade data.
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time-homogenous. This means that the model implies that future volatility surfaces
will look like today’s surface. West has shown how to calibrate the SABR model using
South African index option data [We 05]. Bosman et al. also showed how to obtain
a representative South African volatility surface by implementing the SABR model
using Alsi option data [BJM 08]. Issues with the calibration of the SABR model has
been tackled by Tourrucô [To 08] while the original SABR formula has been rectified
by Oblój [Ob 08].

A general problem associated with stochastic volatility models is that they fail to
model the dynamics of the short term volatility skews. This arises from the fact that
the at-the-money volatility term structure can be so intricate in the short-end4 that
these models just fail at accurately modelling the short end volatility dynamics. In
fact, Jim Gatheral states [Ga 06]

“So, sometimes it’s possible to fit the term structure of the at-the-money
volatility with a stochastic volatility model, but it’s never possible to fit
the term structure of the volatility skew for short expirations... a stochas-
tic volatility model with time homogenous parameters cannot fit market
prices!”

The possibility of using an extended stochastic volatility model with correlated
jumps in the index level and volatility might fit the short-term market volatility skews
better, but in practice it is difficult (if not impossible) to calibrate such a complex
model [Ga 09].

The above-mentioned problems associated with stochastic volatility models led us
to look beyond these models.

4.2 Empirical Approaches

The empirical approach known as the Vanna-Volga method has been studied exten-
sively. This approach was introduced by Lipton and McGhee [LM 02]. The Vanna-
Volga method is also known as the traders’ rule of thumb. It is an empirical procedure
that can be used to infer an implied-volatility smile from three available quotes for a
given maturity; it is thus useful in illiquid markets. It is based on the construction of
locally replicating portfolios whose associated hedging costs are added to correspond-
ing Black-Scholes prices to produce smile-consistent values. Besides being intuitive
and easy to implement, this procedure has a clear financial interpretation, which
further supports its use in practice [Wy 08].

The Vanna-Volga approach considers an option price as a Black-Scholes price
corrected by hedging costs caused by stochasticity in price-forming factors (volatility,
interest rate, etc.) observed from real markets. While accounting for stochasticity in
volatility, it differs from stochastic volatility frameworks (Heston, SABR, and modern

4Intricate in the sense that the short term volatility skews can include volatility jumps that are
correlated with the equity index level, that are usually not assumed when stochastic volatility models
are derived to model the equity index volatility surface.
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Levy process-based generalizations) in the following way: rather than constructing
a parallel (possibly correlated) process for the instantaneous volatility and defining
the price as the risk-neutral expectation, the Vanna-Volga approach puts much more
weight on the self-financing argument, considering an option price as a value of the
replicating Black-Scholes portfolio plus additional corrections offsetting stochasticity
in volatility [Sh 08].

This approach is very popular in the foreign exchange market but has been applied
to equities as well. Bosman et al. [BJM 08] implemented it with South African index
data while Weizmann used Dow Jones Euro Stoxx 50 data [We 07].

4.3 Nonparametric Estimation of the Skew

In illiquid markets it might not be possible to calibrate models (stochastic or deter-
ministic) due to a lack of data. In such circumstances nonparametric option pricing
techniques might be feasible.

Nonparametric option pricing techniques utilise spot market observed security
prices in order to determine the probability distribution of the underlying asset
[Ja 05]. Using stock prices has the disadvantage of offering no guarantee of matching
option prices. However, supposing that the model is right, we have a great quantity
of data input for calibration.

Derman and Kani [DK 94] and Rubinstein [Ru 94] utilise implied binomial tree
(IBT) approaches to find risk-neutral distributions which result in estimated option
prices that match observed option prices. These nonparametric approaches impose no
assumptions about the nature of the probability distribution of the asset. This leaves
little room for misestimation of option pricing resulting from an incorrect choice of the
probability distribution of the underlying asset. Thus nonparametric methods do not
suffer from the smile bias that is evidenced in parametric models. Using nonparamet-
ric methods to estimate the price of an option and reversing this price through the
Black-Scholes formula will yield the conventional implied volatility. Following this
procedure for a range of possible strikes will result in the so-called nonparametric
volatility skew. The nonparametric volatility skew is free of any model-specific as-
sumptions and, as it is based only on observed asset data, it is a minimally subjective
estimate of the volatility skew [AM 06].

An IBT is a generalization of the Cox, Ross, and Rubinstein binomial tree (CRR)
for option pricing [Hu 03]. IBT techniques, like the CRR technique, build a binomial
tree to describe the evolution of the values of an underlying asset. An IBT differs from
CRR because the probabilities attached to outcomes in the tree are inferred from a
collection of actual option prices, rather than simply deduced from the behavior of
the underlying asset. These option implied risk-neutral probabilities (or alternatively,
the closely related risk-neutral state-contingent claim prices) are then available to be
used to price other options. Arnold, Crack and Schwartz showed how an IBT can be
implemented in Excel [ACS 04].

De Araújo and Maré compared nonparametrically derived volatility skews to mar-
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ket observed implied volatility skews in the South African market [AM 06]. Their
method is based only on the price data of the underlying asset and does not require
observed option price data to be calibrated. They characterised the risk-neutral dis-
tribution and density function directly from the FTSE/JSE Top40 index data. Using
Monte Carlo simulation they generated option prices and found the implied volatility
surface by inverting the Black-Scholes equation. This surface was found to closely
resemble the Safex traded implied volatility surface.

5 The Deterministic Volatility Approach

Implementing stochastic volatility models and implied binomial trees can be very
difficult. With stochastic volatility, option valuation generally requires a market price
of risk parameter, which is difficult to estimate [DFW 98]. However, if the volatility is
a deterministic function of the asset price and/or time, the estimation becomes a lot
simpler. In this case it remains possible to value options based on the Black-Scholes
partial differential equation although not by means of the Black-Scholes formula itself.

5.1 Deterministic Models

Deterministic volatility functions (DVF) are volatility models requiring no assump-
tions about the dynamics of the underlying index that generated the volatility. These
models can only be implemented if one assumes that the observed prices of options
reflect in an informationally efficient way everything that can be known about the
true process driving volatility — the efficient market hypothesis [Re 06].

Deterministic volatility functions were introduced in the 1990s. During 1993,
Shimko studied the risk neutral densities of option prices and chose a simple parabolic
function as a possible parametric specification for the implied volatility [Sh 93]. Du-
mas et al. studied the applicability of such simple functions. They started by rewrit-
ing the general Black-Scholes differential equation as a forward partial differential
equation (applicable to forward or futures contracts)

1

2
σ2 (F, T ) K2 ∂2C

∂K2
=

∂C

∂t

with the associated initial condition, C(K, 0) ≡ max(S −K, 0). Also, S is the spot
price, F the forward or futures price, K the absolute strike price, T is the time to
expiration and C(K,T ) is the call price. The advantage of the forward equation
approach is that all option series with a common time to expiration can be valued
simultaneously. They further mentioned that σ(K,T ) is an arbitrary function. Due
to this they posit a number of different structural forms (deterministic functions) for
the implied volatility as a function of the strike and time to expiry [DFW 98]
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Model 0 : σ = a0

Model 1 : σ(K) = a0 + a1K + a2K
2 (1)

Model 2 : σ(K, T ) = a0 + a1K + a2K
2 + a3T + a5KT

Model 3 : σ(K, T ) = a0 + a1K + a2K
2 + a3T + a4T

2 + a5KT

Here, the variables a0 through a5 are determined by fitting the functional forms to
traded option data. Model 0 is the Black- Scholes model with a constant volatility
where Model 1 attempts to capture variation with the asset price. Models 2 and
3 capture additional variation with respect to time. They estimated the volatility
function σ(K, T ) by fitting the functional forms in Eq. (1) to observed option prices
at time t (today). They used S&P 500 index option data captured between June
1988 and December 1993. Estimation was done once a week. The parameters and
thus skews were estimated by minimising the sum of squared errors of the observed
option prices from the options’ theoretical deterministic option values given by the
functional forms5. Models 1 through 3 all reflected volatility skews or smirks. They
found that the Root Mean Squared Valuation Error of Model 1 is half of that of the
Black-Scholes constant volatility model. Another important result from their study
is that the functional forms loose their predictive ability rather quickly. This means
that these functional forms need to be refitted to traded data on a regular basis.

Beber followed the Dumas et al. study but used options written on the Mib30 —
the Italian stock market index [Be 01]. He optimised two models

Model 1 : σ = β0 + β1K + ε

Model 2 : σ = β0 + β1K + β2K
2 + ε (2)

One difference between his and the Dumas study is that he defined K as the mon-
eyness and not absolute strike. Model 1 is linear in the moneyness and Model 2
quadratic i.e. it is a parabola. ε is just an error estimate. The simplicity of the two
models is determined by the endeavour to avoid overparametrization in order to gain
better estimates’ stability over time. Beber also decided to give the same weight to
each observation, regardless the moneyness, as the strategy to assign less weight to
the deep out of the money options owing to the higher volatility has not proven to be
satisfactory. He fitted the traded option data by ordinary least squares. Beber found
that the average implied volatility function is fitted rather well by a quadratic model
with a negative coefficient of asymmetry. Hence the average risk neutral probability
density function on the Italian stock market is fat tailed and negatively skewed. The
interpretation of the parameters in general are as follows

• β0 represents a general level of volatility which localizes the implied volatility
function (it is also the constant of regression),

5They used an algorithm based on the downhill simplex method of Nelder and Mead [PFTV92].
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• β1 characterizes the negative profile which is responsible for the asymmetry in
the risk neutral probability density function; it is the coefficient that controls
the displacement of the origin of the parabola with respect to the ATM options,
and

• β2 provides a certain degree of curvature in the implied volatility function or it
controls the wideness of the smile.

One of the most comprehensive studies was done by Tompkins in 2001 [To 01].
He looked at 16 different options markets on financial futures comprising four asset
classes: equities, foreign exchange, bonds and forward rate agreements. He compared
the relative smile patterns or shapes across markets for options with the same time
to expiration. He also used a data set comprising more than 10 years of option prices
spanning 1986 to 1996. The individual equities examined were: S&P500 futures,
FTSE futures, Nikkei Dow futures and DAX futures. He fitted a quadratic volatility
function to the data and found his graphs of the implied volatility to be similar to
that shown by Shimko in 1993 [Sh 93] and Dumas et al [DFW 98]. Tompkins then
states:

”If the sole objective was to fit a curved line, this has been achieved”.

He concluded that regularities in implied volatility surfaces exist and are similar for
the same asset classes even for different exchanges. A further result is that the shapes
of the implied volatility surfaces are fairly stable over time.

Many studies followed the Dumas and Tompkins papers, most using different
data sets. All of these studied the models listed in Eqs. (1) and (2). Sehgal and
Vijayakumar studied S&P CNX Nifty index option data [SV 08]. These options trade
on the derivatives segment of the National Stock Exchange of India6. Badshah used
out-the-money options on the FTSE 100 index and found the quadratic model to be
a good fit [Ba 09]. Zhang and Xiang also studied S&P500 index options and found
the quadratic function fits the market implied volatility smirk very well. They used
the trade data on 4 November 2003 for SPX options expiring on 21 November 2003
- thus very short dated options [ZX 05]. They used all out-the-money puts and calls
and fitted the quadratic function by minimising the volume weighted mean squared
error and found the quadratic function to work very well.

Another comprehensive study was done by Panayiotis et al. [PCS 08]. They
tackled the deterministic methodology from a different angle. They considered 52
different functional forms to identify the best DVF estimation approach for modelling
the implied volatility in order to price S&P500 index options. They started with
functions as given by Dumas et al. and listed in Eq. (1) where K is the absolute
strike. Next they changed the strike to ln K, S/K (moneyness) and lastly to ln (S/K).
All in all they considered 16 functions similar to Eqs. (1). They also considered a

6The S&P CNX Nifty is an index comprising the 50 largest and most liquid companies in India
with about 60% of the total market capitalisation of the Indian stock market.
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number of asymmetric DVF specifications. Their dataset covered the period January
1998 to August 2004 — 1675 trading days. They recalibrated all 52 functions on a
daily basis. Their main result is that the deterministic specification with strike used
as moneyness (S/K) works best in-sample while the model with strike used as ln K
works best out-of-sample.

Modeling the volatility skew as a deterministic process has other benefits too
[Bu 01]

• They allow one to model volatility separately in expiry time and strike. This
means that each expiry’s skew can be independently calibrated minimising com-
pounding errors across expiries. This property is useful in modeling volatility
surfaces in illiquid markets where data is sparse across strikes.

• Pricing using deterministic volatility preserves spread arbitrage market condi-
tions because no assumptions about the underlying process is made.

• The whole surface can be calibrated with minimal model error.

5.2 Principle Component Analysis

Using a 3 parameter quadratic function was further motivated by the research findings
due to Carol Alexander [Al 01]. She did a principle component analysis (PCA) on
FTSE 100 index options and found that 90% of the dynamics of the volatility skew
are driven by three factors

• parallel shifts (trends),

• tilts (slopes), and

• curvature (convexity).

Badshah also did a PCA on FTSE 100 options. He used the implied volatility
surfaces for the March and October months for the years 2004, 2005, 2006 and 2007.
His results are in line with that of Alexander although he found that on average 79%
of the dynamics of the skews are driven by the first 3 components — this is similar
to the findings by Alexander [Ba 09]. Le Roux studied options on the S&P500 index
with strikes ranging from 50% to 150% [Le 07]. He found that 75.2% of the variation
of the implied volatility surface can be described by the first principle component
and another 15.6% by the second! His first component reflects the slope or tilt of
the skew. The difference between his study and that of Alexander’s is that he used
moneyness instead of absolute strikes.

Bonney, Shannon and Uys followed Alexander’s methodology and studied the
principle components of the JSE/FTSE Top 40 index [BSU 08]. They found that the
trend affect explains 42% of the variability in the skew changes, the slope 19% and
the convexity an additional 14%. Their results show that the first three components
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explain 76.24% of the variability in skew changes. They attribute the difference
between Alexander’s 90% and their 76% to differences between a liquid market and
less liquid emerging market.

5.3 The SVI Model

Another interesting research finding was presented by Jim Gatheral [Ga 04]. He de-
rived the Stochastic Volatility Inspired (SVI) model. This is a 5 parameter quadratic
model (in moneyness) based on the fact that many conventional parameterisations
of the volatility surface are quadratic as discussed in §5.1. This parametrisation has
a number of appealing properties, one of which is that it is relatively easy to elimi-
nate calendar spread arbitrage. This model is “inspired” by the stochastic volatility
models due to the fact that implied variance is linear in moneyness as K → ±∞ for
stochastic volatility models. Any parametrisation of the implied variance surface that
is consistent with stochastic volatility, needs to be linear in the wings and curved in
the middle. The SVI and quadratic models exhibit such properties. Gatheral also
states that:

“if the wings are linear in strike (moneyness), we need 5 and only 5 pa-
rameters to cover all reasonable transformations of the volatility smile.”

This model was extensively tested using S&P500 (SPX) index option data with
excellent results.

5.4 The Quadratic Function for the ALSI Volatility Surface

The results from all the studies on deterministic volatility functions and the PCA
studies mentioned above form the basis in modelling the South African ALSI index
volatility surface. In scrutinising Eqs. (1) and (2) and taking illiquidity into account,
we postulate that the following three parameter quadratic function should be a good
model of fit for the ALSI implied volatility data (following the Beber notation in Eq.
(2)

σmodel(β0, β1, β2) = β0 + β1 K + β2 K2. (3)

In this equation we have

• K is the strike price in moneyness format (Strike/Spot),

• β0 is the constant volatility (shift or trend) parameter, β0 > 0. Note that

σ → β0
K→0

,

• β1 is the correlation (slope) term. This parameter accounts for the negative cor-
relation between the underlying index and volatility. The no-spread-arbitrage
condition requires that −1 < β1 < 0 and,
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• β2 is the volatility of volatility (‘vol of vol’ or curvature/convexity) parameter.
The no-calendar-spread arbitrage convexity condition requires that β2 > 0.

Note that Eq. (3) is also linear in the wings as K → ±∞. In Fig. 5.4 we plot the
volatility skew for the near Alsi as obtained by implementing Eq. (3). A discussion of

Figure 3: The ALSI volatility skew for the December futures contract at the beginning
of October 2009.

the no-arbitrage parameter constraints on the correlation β1 and volatility of volatility
β2 parameters can be found in Appendix A.

5.5 Volatility Term Structure

The functional form for the skew in Eq. (3) is given in terms of moneyness or in
floating format (sticky delta format). This DVF does also not depend on time. The
optimisation is done separately for each expiry date. In order to generate a whole
implied volatility surface we also need a specification or functional form for the at-
the-money (ATM) volatility term structure. It is, however, important to remember
that the ATM volatility is intricately part of the skew. This means that the two
optimisations (one for the skews and the other for the ATM volatilities) can not be
done strickly separate from one another. Taking the ATM term structure together
with each skew will give us the 3D implied volatility surface.

It is well-known that volatility is mean reverting; when volatility is high (low)
the volatility term structure is downward (upward) sloping [Al 01, Ga 04]. This was
shown for the JSE/FTSE Top 40 index in Fig. 2. We therefore postulate the following
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functional form for the ATM volatility term structure

σatm(τ) =
θ

τλ
. (4)

Here we have

• τ is the months to expiry,

• λ controls the overall slope of the ATM term structure; λ > 0 implies a down-
ward sloping ATM volatility term structure (this is plotted in Fig. 5.5), whilst
a λ < 0 implies an upward sloping ATM volatility term structure, and

• θ controls the short term ATM curvature.

Figure 4: The market fitted at-the-money volatility term structure for the ALSI at
the beginning of April 2009.

Please note that τ is not the annual time to expiry. It actually is the “months to
expiry”. It is calculated by

dateexpiry − date0

365
∗ 12.

The reason for this notation is that if τ = 1, the ATM volatility is given by θ; the 1
month volatility is thus just θ. This makes a comparison between the South African
1 month volatility, and the 1 month volatilities offshore, like the VIX, easier.

A better understanding of these parameters is obtained if we consider the deter-
ministic term of the Heston stochastic differential equation [He 93]

dσ(τ) =
λ

τ
(ω − σI(τ)) dt (5)
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where ω is a long term mean volatility and λ/τ is the mean reversion speed.
The solution to the ordinary differential equation in (5) is given by

σ(τ) = ω +
σ0 − ω

τλ
(6)

Comparing Eqs. (4) and (6) let us deduce that

• θ is a term that represents the difference between the current at-the-money
volatility σ0 and the long term at-the-money volatility ω, and

• λ is a parameter defined such that λ/τ is the mean reversion speed useful for
ATM calendar spreads.

In using the volatility skew function given in Eq. (3) and the volatility term
structure function shown in Eq. (4), we can generate the market equity index volatility
surface in the deterministic framework.

6 Implementing the Deterministic Volatility Func-

tions

Implementing the deterministic functions given in Eqs. (3) and (4) means we have
to optimise or fit these functions to the trade data in a meaningful manner. In this
section we show that estimating the volatility surface in the deterministic framework
is a robust approach to modelling the equity index volatility surface.

6.1 The Data

Most index options are traded on the Alsi futures contracts. These contracts are
listed on Safex. Still, the ALSI options market can be very illiquid at times with few,
if any, at-the-money trades. The market is even more illiquid in long-term option
trades. The number of trades differs substantially on a daily basis. There can be
anything from as few as 5 near dated trades to more than 50 on any given day. Most
trades are concentrated in the near and next-near contracts (3 to 6 months expiries).
Currently these are for the Dec09 and Mar10 contracts. A good day will also have a
good number of trades in the next contract i.e., Jun10 (9 month expiry). Options on
futures with more than 9 months to expiry hardly ever trade.

Before any calibration is done, the data needs to be cleaned. The raw trade data
is extracted from the Nutron trading system7. The trade data includes the trade
date, futures spot, strike, traded volatility, option type, and the volumes traded. In

7This trading system is used by all members and were developed by Securities and Trading
Technology (http://www.tsti.co.za/). Safex supplies the system free of charge to all derivatives
members.
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general the average number of contracts traded is 1000 per single trade. Single trades
with less than 10 contracts are discarded.

The sparseness of market data makes the volatility calibration prone to significant
model errors. This holds especially if the market implied skew and the term struc-
tures are estimated jointly with the risk of errors being compounded. In this light,
the deterministic model is appropriate as it models the volatility surface separately
in skews (strikes) and in term structures (expiry times). This approach is suitable
for modelling volatility surfaces using sparse option trades, because it indirectly ac-
commodates for the fact that the relationship of volatility on the strikes and through
time can change independently with different statistical errors.

Note, options with expiries of less than a month have parameter t-statistics (see
Appendix B) that are unreasonably high. This is probably the case because the
very short end of the surface is prone to volatility jumps. To preserve the volatility
dynamics (no-arbitrage bounds), the very short time to expiry trades (usually < 1
month) are omitted in the deterministic volatility construction.

6.2 Calibrating the Model Skews

The volatility surface is obtained by calibrating the skews using the functional form
in Eq. (3) and the empirical data — this means we fit the data to the given equation.
The minimization problem we have to solve at time t0 is stated as

ωi min
βk

∥∥∥σmodel
ti

− σtraded
ti

∥∥∥
2

with ti ∈ [t0 − h, t0]; k = 1, 2, 3 (7)

subject to the constraints; β0, β2 > 0, and −1 < β1 < 0. Here h ∼ 7 and ωi are
weights such that the optimisation are biased towards the most recent traded data.

The optimisation is performed using the Nelder-Mead grid search [RV 07], [PFTV92].
The average error is monitored to ensure it remains within an tolerable limit. On any
given day, there might not be enough trades to afford a good fit. In such situations we
use all trades from the last 7 days bulked together. This naturally suggests that we
employ a time decay weighting scheme. To this end we use an exponentially weighted
moving average, with the decay constant adjusted for time. Note that this minimi-
sation will give us the floating skews which entails that we fit the data to obtain the
shape of the skews only. A broader discussion on the fitting procedure is given in
Appendix C.

Fig. 6.2 shows a typical ALSI skew calibration. We show the scattered data
together with the fitted function from Eq. (3). This calibration was done on 7 October
2009 and the parameters were found to be: β1 = -0.52, β2 =0.10 and β0 =0.65. The
error associated with the skew calibration is usually less than 1.5%; in this case it
was 0.517%. The parameters are calculated for each expiry. We list the optimised
parameters at the beginning of October 2009 in Table 6.2.

Eq. (3) becomes useful if we realise that the ATM volatilities have a moneyness
of 100%. By substituting this back into Eq. (3) we obtain the model ATM volatility
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Figure 5: The Mar10 Alsi volatility skew as obtained by optimising and calibrating
the deterministic volatility model. The average calibration error is 0.517%.

as
σmodel

atm (β0, β1, β2, τ) = β0 + β1 + β2. (8)

In using Eqs. (3) and (8) we obtain the model floating skew as follows

σmodel
float (τ) = σmodel − σmodel

atm

= β1 (K − 1) + β2 (K2 − 1). (9)

Eq. (9) can now be implemented to obtain the correct relative/floating volatility
skews. Fig. 6.2 shows some of the floating skews.

Slope (β1) Shift (β0) VolVol (β2)
Expiry
17-Dec-09 -0.78689926 0.24831875 0.77464525
18-Mar-10 -0.68597081 0.20341598 0.71784505
17-Jun-10 -0.63671087 0.18253990 0.68877327
16-Sep-10 -0.60478572 0.16939262 0.66939456
15-Dec-10 -0.58168726 0.16007358 0.65508826
17-Mar-11 -0.56323816 0.15274954 0.64347895
15-Dec-11 -0.52509543 0.13795182 0.61892680

Table 1: Optimised parameters for Eq. (3) using actual trade data as supplied by
Safex. Optimisation was done at the beginning of October 2009.
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Figure 6: The deterministic floating skews for three different expiries.

6.3 Calibrating the Term Structure of at-the-money Volatil-
ities

Eq. (9) gives us the floating volatilities only whilst Eq. (8) gives us the model ATM
volatilities. To obtain the correct absolute volatilities, we need the correct ATM
volatilities. This is now done by separately calibrating Eq. (4). As a basis for the
at-the-money volatility term structure determination, we utilize the at-the-money
volatilities defined by the optimised skews and given in Eq. (8). We then minimise
the function

min
θ,λ

∥∥∥∥∥σ
model
atm (τ)− θ

τλ

∥∥∥∥∥
2

(10)

with τ the months to expiration. A full description of the optimisation is given in
Appendix D.

The parameters obtained in optimising Eq. (3) are usually very accurate for the
first 3 expiries due to enough trade data available. This entails that the optimisation
of Eq. (4) is also quite good. However, if there is only enough data available in the
first two expiries, the fitting error will be larger. In Table 6.3 we list the optimised
parameters as well as ATM volatilities obtained at the beginning of October 2009.

The current term structure is plotted in Fig. 7. Note that the errors are higher
for the very short and long times to expiration. This is because the very short end of
the ATM volatility curve is prone to volatility jump risk and is therefore difficult to
model [Ga 06]. The long end suffers from the sparse data problem.

By combining the estimated ATM volatility term structure and the relative volatil-
ity skews, the volatility surface is obtained.
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Date Months to Expiry ATM Vols ATM
17-Dec-2009 2.367123288 24.882488574 λ 0.012166143
18-Mar-2010 5.358904110 24.636363040 θ 0.251447104
17-Jun-2010 8.350684932 24.503765914
16-Sep-2010 11.342465753 24.412649496
15-Dec-2010 14.301369863 24.343899598
17-Mar-2011 17.326027397 24.287144045
16-Jun-2011 20.317808219 24.240123090
15-Sep-2011 23.309589041 24.199646164
15-Dec-2011 26.301369863 24.164119665

Table 2: The ATM term structure of volatility and parameters obtained by calibrating
Eq. (4).

6.4 Robustness of the Model

It is a well-known fact that volatility surfaces generated from models need to be stable
in order to achieve reliable valuations and sound risk management calculations. In
this light, the deterministic volatility model parameters are constrained and it can be
shown that these parameters are unique.

If a model volatility skew is generated on a daily basis, one runs the risk that the
wings can vibrate. The more illiquid the market, the more this becomes a problem.
This is a consequence of the optimisation procedures employed and is obviously not
how the markets trade on a daily basis. In order to overcome this problem we double
smooth the skews and this compromise the reaction speed.

7 Tests and further Results

The model surface has been tested against the official Safex surface over the past 10
months. Up until the 7 October 2009, Safex’s official surface was a polled surface.
The market was polled on the first Monday of every month. On average about 6 to 9
market participants contributed their surfaces — most of these were market makers.
The average surface was calculated and that surface was used as the official Safex
surface from the Thursday following the 1st trading Monday. This surface was stale
for the next month until the next polling Monday.

In Figs. 8, 9 and 10 we plot the model skews and polled skews for the Dec09, Mar10
and Jun10 option contracts. The polled skews were obtained on 5 October 2009.
Similar results were obtained for all tests done since January 2009. In comparing the
polled and model skews it is useful to realise that the polled surface was an equally
weighted surface. Some contributors hardly ever traded but their surfaces had the
same weight as those who traded the most. The model surface, on the other hand,
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Figure 7: The ATM term structure of volatility at the beginning of October 2009.

will be biased towards the most active market player. In theory, if only one player
trade actively, the model should reproduce that player’s surface!

The model surface is also consistent with the polled surface in that it reflects the
no-spread-arbitrage rule — none of the skews crosses (see Appendix A).

These results show that the model surface is indeed a true market related surface.
The model surface is also unbiased because actual traded data was used in its con-
struction. It has been very robust and its dynamics are correlated to the dynamics
of the underlying future contracts. The fitting methodology can be seen as a best-
decency fit similar to fitting a yield curve to bond data. This means that we might
not be able to price all options back to their original premiums but the skews are
smooth and still arbitrage free.

8 Conclusion and Discussion

The deterministic model has been tested with market data over the last 10 months.
The results are excellent and the model is very robust. These results show that the
quadratic deterministic volatility function given in Eq. (3) is a good model to use
as a specification of the implied volatility surface. A further analysis on the stability
of the deterministic volatility function led to similar results as obtained by Tomkins
[To 01]. We also found that the shape of the implied volatility surface is fairly stable
over time. This is good news for the risk management processes employed by clearing
houses.

With the optimisation we ensured that the surface is calendar-spread arbitrage
free. Human interventions are minimised and no trading biases are incorporated. The
volatility surface obtained with the model reflects the true traded volatilities and can
thus be seen as the true traded implied volatility surface for options traded on the
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Figure 8: Comparison of the model and polled skew for Dec09 ALSI.

ALSI futures contracts.

A Sufficient Conditions for no Spread Arbitrage

Arbitrage is a trading strategy that takes advantage of two or more securities being
mispriced relative to each other. No-arbitrage conditions have been pivotal in the
development of “fair” prices for all derivatives, especially in the futures and options
market [16]. The aim of this annexure is to show that the constraints imposed on the
parameters of the deterministic model, implies that the volatility surface should be
arbitrage free [Ca 04, Ga 04, Le 04].

A.1 Spread Arbitrage

We will now show that imposing put and call spread no-arbitrage constraints on the
parameters implies a spread arbitrage free volatility surface when constructing the
surface in the deterministic framework.

Suppose we construct the floating skews in the deterministic framework using the
relation as defined by equation (3)

σ(K) = β0 + β1K + β2K
2 withβ0 > 0.

For equity index skews it is well known that the out-the-money puts, must trade at
a higher volatility than out-the-money calls8 i.e.

∂σ(K)

∂K
< 0

8We limit ourselves to out-the-money options, because in general they are more liquid.
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Figure 9: Comparison of the model and polled skew for Mar10 ALSI.

or
β1 + 2 β2 K < 0. (11)

From a trade perspective, the more out-the-money an option, the more convexity
the skew should reflect [Ga 04]. This condition implies that

∂2σ(K)

∂K2
> 0

or equivalently that
2 β2 K > 0. (12)

However, the moneyness K > 0 which means that in order for Eqs. (11) and (12) to
hold we must have

−1 < β1 < 0

β2 > 0.

These conditions are imposed on the parameters when deriving the floating skews
and leads to skews with no vertical (bull and bear) spread arbitrage. In addition to
these, no other vertical spread arbitrage free constraints are used when constructing
the floating skews when each of the asymptotic term structures of these parameters
are derived [Ca 04].

In Fig. 11 we show the near and far expiries’ floating skews obtained in a calendar
spread arbitrage setting while, in Fig. 12 we show the near and far expiries’ floating
skews obtained in a no-calendar spread arbitrage setting.

The consequences of using the term structure of the vertical spread arbitrage free
parameters to generate the market volatility surface are
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Figure 10: Comparison of the model and polled skew for Jun10 ALSI.

1. No two parameter estimates are the same, the parameters are unique.

2. None of the derived skew lines crosses, in other words, the final volatility surface
is calendar spread arbitrage free.

Constraining and deriving the parameters in this way, ensures that the final volatility
surface is arbitrage free for most spread strategies (bull, bear, and calendar spreads).

A.2 Importance of Skew Parameter Constraints

The most fundamental spread strategy is the bull call spread. This spread is created
by buying a call option on the index with a certain strike level, and then selling a
call option on the same index, with a higher strike level. Both options expires on the
same date. If the volatility is invariant to both options, we can expect that the price
of a call will always decrease as the strike price increases. This means that the value
of the option sold is always less than the value of the option bought. Thus with a flat
volatility surface, consistent and fair pricing of the bull call spread requires an initial
investment into the strategy.

In the real world, the volatility surface is not flat. The price of a bull call spread,
is therefore not only a function of the strike level, but also a function of the volatility
skew. The equity index implied volatility is in general a skewed curve in strike prices;
such that call equity options with higher strike prices (out-the-money calls) have lower
volatilities, than call equity options with lower strike prices (in-the-money calls)9.
Thus in the presence of the equity volatility skew, the bull call spread, requires the

9Consistent and fair pricing of options requires that out-the-money calls must have a lower
volatility than the more dearer in-the-money call option volatilities.
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Figure 11: The near and far expiries’ floating skews obtained in a calendar spread
arbitrage setting.

buying of a call at a low strike, high volatility and selling a call at a high strike, lower
volatility. In the presence of a volatility skew, consistent and fair pricing of the bull
call spread requires an initial investment into the strategy.

A.3 The Skew and the Arbitrageur

Suppose the volatility skew is skewed such that the lower call strike has lower volatility
than the higher strike call option. An arbitrageur will then sell the expensive high
strike call to fund the cheaper low strike call. But consistent and fair pricing of the
bull call spread requires that the volatility must be skewed such that the lower call
strike has higher volatility than the higher call strike. The volatility skew used by the
arbitrageur, initially, must revert to the volatility skew used for fair and consistent
pricing. When the volatility skew has reverted, the arbitrageur will close out his
position and realise a risk-less profit.

B Parameter Confidence Measure: t-statistic

In order, to determine which expiry specific parameters are statistically insignificant,
we use the t-statistic [Al 01, Wi 09]. In short, the t-statistic measures the confidence
associated with a particular parameter. The t-statistic is defined as the ratio of the
value of the parameter to its standard error. Thus, the greater (lower) the t-statistic
the higher (lower) the confidence associated with a particular parameter.
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Figure 12: The near and far expiries’ floating skews obtained in a no-calendar spread
arbitrage setting.

Parameter confidence10 is important for indicating whether the parameters are
statistically sound. The parameter confidence statistic in this way provides a way of
measuring whether the optimised parameters do define a statistically confident skew.
This measure is especially important for very near expiries, where the volatilities are
highly prone to jump risk — a difficult to model phenomena. A critical t-statistic
value of 1% was used, which implies that, when optimising the volvol parameter and
it has a t-statistic greater than 1%, it will be statistical significant and should be used
as the final parameter (see Appendix A).

In Fig. 13 we plot the t-statistics for the parameters in Eq. (3). The t-statistic
of all the parameters reaches a minimum when we are 1 to 11

2
months away from

expiry. Since the t-statistic measures the confidence associated with the parameter,
it is clear that the confidence of the parameters drops significantly for construction
of the volatility surface for dates between 1 to 11

2
months to expiration.

C Optimising the Deterministic Volatility Func-

tion

The objective function that is optimized for constructing the volatility surface using
the Alsi option market data are formulated as follows: starting with a set of initial
values for the parameters β0, β1 and β2 in the deterministic volatility setting, we find

10Volatility of volatility (β2) is as important to volatility traders as the volatility of an equity is
to equity traders.

27



Figure 13: t-statistic of the deterministic model parameters for various months to the
18-March-09 and the 18-June-09 expiry.

the parameter triplet11 such that the Euclidean distance between the traded implied
volatility σtraded

ti
, and the deterministic model volatility σmodel

ti
are minimised. The

minimization problem we have to solve at time t0 is stated as

ωi min
β0,β1,β2

∥∥∥σmodel
ti

− σtraded
ti

∥∥∥
2

with ti ∈ [t0 − h, t0] (13)

subject to the constraints; β0, β2 > 0, and −1 < β1 < 0. Here h ∼ 7 and ωi are
weights such that the optimisation is biased towards the most recent traded data.

The optimization is performed using the Nelder-Mead grid search, and the average
error are monitored to ensure it remains within a tolerable limit12 [PFTV92]. Note
that due to the sparseness of the market data in strikes, on some days there are not
enough strikes per expiry to derive a statistically confident skew.

During the optimisation the following holds

• The set of times [t0 − h, t0] for skew construction is defined such that it covers
a wide enough range of strikes for confident skew construction. With the Alsi
data, it was empirically established that h ∼ 7 trading days is optimal.

• The weights ωi are defined, such that the optimised parameter triplet set has
accuracy that are biased towards the most recent traded volatilities. The weight-

11We conform to referring to the 3 parameters as the parameter set triplet, given that these
parameters describes the dynamics of the volatility surface jointly. This is particularly so because
the surface, at any given time, cannot be fully characterised by one of the parameters only.

12When the root mean square error are higher than 1.5% the data is either filtered for volatility
outliers, or the weighting scheme is adjusted. Convergence with the Nelder Mead optimization are
quick (with any arbitrary chosen initial parameter triplet set), when the data and weighting scheme
are well defined.
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ing scheme13 used to effectively reflect the most recent market volatility skews
are

ωi = 1− 1

7
(1− λ)(t0 − ti)

Through empirical tests we established that an optimal14 λ is 91.5%. The optimum
parameter triplet is then obtained by weighting yesterday’s volatilities about 1% less
than today’s and letting all other historic volatilities recursively weigh 1% less per
day. In this way, the optimised parameter triplet found that are used for deriving the
model volatility skews accurately reflects the current market volatility skew levels15.
An example of actual trade data and the weighting scheme is shown in Fig. 14.

Figure 14: Traded volatilities of Alsi options expiring on 18-Dec-2009 showing sparse
data. The weighting scheme used in the optimisation routine is also plotted.

13Note that this is a specific type of time decaying weighting scheme. The standard (exponential)
volatility time weighing postulates that volatility is a lamda weighted linear sum of reaction and
persistence terms. The standard exponential weighing scheme can therefore be said to be reactive
to the current market volatility regime, yet capturing the important persistence characteristic of
volatility. The standard exponential moving average, as eloquent as it is, applied to sparse volatility
trade data, will distort the structure of the market volatility, especially because the trades are very
sparse in strikes per day. For this reason we conform to use another time weighting average.

14Optimal in the sense of the time taken for the Nelder-Mead optimisation routine to find the
optimal solution to the objective function in Eq. (13).

15In fact, this timeous response of the volatility skew is a necessary condition required for accu-
rately modelling the effect of market shocks on the volatility skew.
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D Calibrating the At-The-Money Volatility Term

Structure

D.1 Obtaining the Short End

The optimisation of the at-the-money volatilities is very intricate and important for
it determines the confidence associated with the estimation of the most important
volatilities on the volatility surface i.e. the at-the-volatilities. In this light, for accu-
rate estimation of the at-the-money term structure in an illiquid market setting, we
first consider some important facts about the skew optimisation that will be useful
for the at-the-money volatility estimation.

The optimized parameter triplet (β0, β1 and β2) obtained from the skew optimi-
sation described in Appendix C cannot be used outright to determine the current
at-the-money volatilities because

• The parameter triplet defines the skew over a certain data period [t0 − h, t0]
that defines an at-the-money for the data period [t0 − h, t0].

• If there are more at-the-money volatility trades than trades used in the optimi-
sation for skews on any other day in the daily data set for the period [t0−h, t0]
using the optimised parameter triplet for skews can result in a mis-estimation
of the current traded at-the-money volatility16. An example of this situation is
depicted in Fig. 15.

The at-the-money term structure and the skews however have a common property:
they jointly17 define the volatility surface and its dynamics. Hence, as a basis for the
at-the-money volatility term structure determination, we utilize the at-the-money
volatilities defined by the optimised skews and given in Eq. (8). We then minimise
the function

min
θ,λ

∥∥∥∥∥σ
model
atm (τ)− θ

τλ

∥∥∥∥∥
2

(14)

with τ the months to expiration.
This optimization is done using the Nelder-Mead grid search, and the results of

the optimisation are the optimized θ and λ parameters that define the structure of
the at-the-money volatility term structure consistent with the dynamics of the skews
[PFTV92]. However, note that these two parameters do not necessarily18 define the
parameters for the current at-the-money volatility term structure. To update the

16More at-the-money trades than skew trades have not yet been observed amongst the Alsi data.
It is in fact, the agricultural market that exhibits this volatility trading pattern.

17Jointly, in the sense that the at-the-money volatility term structure changes are usually followed
by changes in the skews.

18When there is a range of at-the-money trades on a particular day in the skew trade day set, these
parameters will mis-estimate the current at-the-money volatilities. Fortunately this rarely happens
in the Alsi options market.
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Figure 15: Traded volatilities of White maize options expiring on 21-Jul-2010. Multi-
ple skew curve occurs because there are more at-the-money trades than well-defined
trades around the at-the-money.

at-the-money volatility term structure to reflect the current at-the-money volatilities,
a ridge factor, R is introduced. The final at-the-money volatility for any number of
months to expiry τ , is then determined using,

σmodel
atm (τ) =

θ + R

τλ
. (15)

The ridge factor is usually close to 1%. The idea with the ridge factor is to
align the short end of the at-the-money volatility term structure with the current
traded at-the-money volatilities and still keeping the long end of the term structure
(as defined by the skews) intact. At present, no significant trades have been observed
that traded exactly at-the-money, hence the ridge factor is zero at present. Given
the time weighting of the skew optimisation and the current structure of the traded
volatilities, a ridge factor of zero results in at-the-money volatilities that reflect the
current level of the traded at-the-money volatilities correctly. The structure of the
at-the-money trades are monitored daily and the ridge factor will be adjusted when
necessary.

D.2 Optaining the Far End

The rationale behind doing an optimisation to define the parameter term structures
lies in the fact that there are very few Alsi option trades for expirations further than
9 months. The volatility skews cannot be determined due to a lack of data! To
address this problem we studied the term structures of the deterministic parameter
set that defines the polled volatility surface. The polled volatility surface included
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the skews for far dated expiries as well. We found empirically that the parameter
set (especially the ‘vol of vol’ parameter β2) exhibits a decaying term structure. We
therefore decided to use the near dated expiries’ parameters βk(τ) (found in §C) to
infer the far dated expirations via the minimization of

min
θk,λk

∥∥∥∥∥βk(τ)− θk

τλk

∥∥∥∥∥
2

for each parameter k of the triplet (β0, β1 and β2).
The optimisation is performed using the Nelder-Mead grid search and each pair

of optimised (θk, λk) is used to determine the skews that define the far maturity end
of the volatility surface. Due to the time decaying property of the parameter set, the
expression used to determine the parameter term structure for skew construction, is

βτ
k (θk, λk) =

θk

τλk

where τ is the months to expiration, and k is one of parameters in the deterministic
parameter triplet (β0, β1, β2).

It is noted here that each pair (θk, λk) that characterises the term structure of the
skew parameters implies that the parameters mean-revert (Heston surface dynamic)
which is qualitatively well in agreement with the perceived dynamics of volatility
surfaces.
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