

Johannesburg Stock Exchange

Post-trade Services

JSE Services Documentation

Volume PT01 – Post-trade EMAPI Common

Document Version 2.8.0

RTC Version 1.34.0

Release Date 24 August 2020

Number of Pages 76 (Including Cover Page)

9 Page 2 / 76

1 DOCUMENT CONTROL

1.1 Table of Contents

1 DOCUMENT CONTROL ... 2

1.1 Table of Contents ... 2
1.2 Document Information .. 4
1.3 Revision History .. 4
1.4 About this Document .. 6
1.5 Intended Audience.. 6
1.6 Typographical Conventions .. 6
1.7 Related Documents .. 7
1.8 Contact Details ... 7
1.9 Definitions, Acronyms and Abbreviations ... 8

2 OVERVIEW ... 9

2.1 EMAPI Overview .. 9
2.2 Data Communication .. 9
2.3 RTC System Architecture ... 9

2.3.1 Trade Application MultipleXer (TAXM, TAXI) ... 10
2.3.2 Common Data (CD) .. 10
2.3.3 Broadcast Bus (BDX) .. 10
2.3.4 Position Manager Component .. 10
2.3.5 Settlement Component ... 10
2.3.6 Risk Component ... 11
2.3.7 Market Data Component ... 11

3 EMAPI VERSIONING .. 12

4 MESSAGE HEADER .. 13

4.1 Message header ... 13
4.1.1 Setting a unique ClientTxRef .. 14

5 MESSAGES .. 15

5.1 Message Types .. 15
5.2 Message Responses .. 15
5.3 Bookmarking or Pagination .. 16
5.4 Primitive Types ... 17

5.4.1 Integers ... 17
5.4.2 Fixed-point number ... 17
5.4.3 Boolean ... 17
5.4.4 String ... 17
5.4.5 Derived Scalar Types ... 17
5.4.6 Binary Type ... 17

5.5 Composite Type ... 17
5.5.1 Records ... 17
5.5.2 Arrays .. 18

5.6 Example of Request / Response .. 18
5.6.1 Sequence Diagram ... 18
5.6.2 Connection to TAX Server .. 18
5.6.3 5.6.2.1 Encrypted Secure TAX-M Connection .. 19
5.6.4 Failure conditions and recovery .. 20

6 ADMIN MESSAGE FLOWS .. 21

6.1 Server Session Types .. 21
6.2 Session Establishment and Authentication .. 21

6.2.1 Logon .. 21
6.3 Session Surveillance .. 22
6.4 Session Processing .. 23

9 Page 3 / 76

6.4.1 Change Password .. 23
6.4.2 Concurrent Processing of User Requests .. 24

6.5 Session Termination ... 24
6.6 Session Message Sequences .. 24

6.6.1 Session Establishment, Surveillance and Termination 24

7 SUBSCRIPTIONS ... 26

7.1 Broadcast Flows ... 26
7.2 Subscription Groups ... 27

7.2.1 Sequence Number .. 27
7.2.2 Information in Events .. 27
7.2.3 Finding the Latest Sequence Number .. 27

7.3 Subscription Establishment .. 27
7.3.1 Finding the Right Subscription Group ... 28
7.3.2 Current Value Subscriptions ... 28
7.3.3 Replay Subscriptions .. 30
7.3.4 Synchronise Subscription/Replay ... 32

7.4 Subscription Termination .. 33
7.5 Subscription Message Sequences ... 33

7.5.1 Snapshot Subscriptions .. 33
7.5.2 Replay Subscriptions .. 35

7.6 Building a copy of the reference data cache .. 37
7.6.1 CACHE_ACTION .. 37
7.6.2 Other fields .. 38

8 RECONCILIATION .. 39

9 RECOVERY AND FAILOVER .. 43

9.1 Session Recovery... 43
9.1.1 Outstanding Requests .. 43

9.2 Subscription Recovery ... 45
9.2.1 Current Value Subscriptions ... 45
9.2.2 Replay Subscriptions .. 46
9.2.3 Failover ... 49

APPENDIX A – MESSAGE FORMATS ... 51

Reference Data Messages .. 61
Messages by ID ... 65
Constants 65

APPENDIX B – MESSAGE RESUBMITION .. 69

9 Page 4 / 76

1.2 Document Information

Drafted By Post-trade Services

Status FINAL

Version 2.8.0

Release Date 24 August 2020

1.3 Revision History

Date Version Description

11 May 2016 1.0 Initial draft created.

13 July 2016 1.1

Document updated to include changes for RTC Release 1.7.0 and 1.8.0.
Following is a summary of the changes applied:

1. Added note to MsgType field of Header message (Section 4.1)

2. Updated description of Response types (Section 5.1)

3. Updated definition of String (Section 3.4.3)

4. Deleted Sections 6.4.3 (On Behalf Of) and 6.4.4 (Gateway User) as
functionality has been removed from RTC. On-behalf-of functionalty will
be delivered in a subsequent release. Clearing members will be given a
system role to perform on behalf actions for their trading members.

5. Removed redundant field reverseInfo from tables where it was listed

as field has been removed from the API (e.g. Section 7.3.2)

6. Updated Section 7.3.3 (Synchronise Subscription/Replay) – it
incorrectly stated that replay subscription was not supported

7. Updated Section 7.4 (Subscription Termination) to indicate that
SubscriptionTerminationEvent will not be sent to subscribers

8. Updated Appendix A to reflect message defintions as per latest RTC
version

28 Sep 2016 1.2

Summary of updates for RTC Release 1.9.0 and 1.10.0. See
EmapiTransactionsRevHistForMember for more details:

1. The SegmentSize of TaxReplayReq not used in RTC

2. Field description changes to the SubscriptionGroup, Member and
AccessGroup objects.

25 Oct 2016 1.3
1. Added Section 7.6 on building a copy of the reference data cache.
Used to identify when reference data is added, updated or deleted from
RTC.

9 Dec 2016 1.4 1. Updated Warning description of response messages in section 5.1

9 Page 5 / 76

Date Version Description

20 Jan 2017 1.5

Updated for RTC Release 1.13.0:

1. Updates to Section 7.6 Building a copy of reference data cache.

17 Feb 2017 1.6

Added new Section 5.3 Bookmarking or Pagination to highlight existing
bookmarking functionality more clearly to users.

New message TaxSessionStatus added to provide additional

information on session terminations.

10 Mar 2017 1.7
Minor cosmetic changes. No functional changes were introduced in this
version of the document.

03 June
2017

1.8
Added a note to Section 5.3 Bookmarking or Pagination regarding the use
of the bookmark field.

30 June
2017

1.9
Minor cosmetic changes. No functional changes were introduced in this
version of the document.

21 July 2017 2.0

Updates for RTC Release 1.19.1:

1. Updated Section 9.1.1 to highlight how Recovery and Outstanding
Request functionality is handled. Appendix B was added for a full
list of messages and how they will respond to outstanding
requests.

2. Updates to Section 5.2 Message Responses.

3. Field description changes to the TaxLogonReq message and
Member object.

14 Oct 2017 2.1

Updates for RTC Release 1.20:

1. Field description changes for the TaxSnapshotSubscribeRsp
message

2. Removed information regarding the lastPublishedSeqNo in
Section 7.3.2 and 7.3.4.

22 Jan 2018 2.2

Updates for RTC Release 1.21:

1. Field description changes for the TaxEndSnapshot message.

05 Mar 2018 2.3
Minor cosmetic changes. No functional changes were introduced in this
version of the document.

03 Apr 2018 2.4 Only version number updates

13 Jul 2018 2.5 Only version number updates

13 Aug 2018 2.6 1. Updated MARKET_DATA_FLOW Replay column in section 7.1

04 Sept 2018 2.7 Only version number updates

25 Sept 2018 2.7.1 Added section 4.1.1 Setting a unique ClientTxRef

15 Nov 2018 2.7.3 Only RTC version number update in Appendix A

22 Feb 2019 2.7.4 RTC version update in Appendix A to 1.28.1

11 Jun 2019 2.7.5 Only version number updates

30 Jul 2019 2.7.6
Added section 5.6.2.1 with new encrypted TLS versions 1.2 and 1.3
protocols

27 August
2019

2.7.7 Update to RTC version number 1.30

29 November
2019

2.7.8 Update to RTC version number 1.31.0

9 Page 6 / 76

Date Version Description

12 February
2020

2.7.9

Update to RTC version number 1.32.0

Also updated section 6.4.1 Change Password section to reflect correct
password length

24 August
2020

2.8.0
Update to RTC version number 1.34.0. This version includes version
1.33.0

1.4 About this Document

The purpose of this document and its related documents (See1.7) is to serve as guidance to
the EMAPI protocol when implementing EMAPI client applications or backend systems to
integrate with the JSE’s real-time clearing (RTC) system.

This document provides guidance on the common or session/admin part of the EMAPI
protocol such as:

 basic concepts, e.g. versioning and types

 message header syntax

 administration messages, e.g. logon, password change, session termination

 subscriptions to broadcast flows

 reconciliation between client and server

 recovery and failover

Note: The complete EMAPI syntax is described in the related documents
EmapiTransactionsForMember.xml, EmapiTransactionsForMember.html and
EmapiTransactions.xsd (See 1.7).

The application/business messages in the protocol are described in Volume 02 – Post-trade
EMAPI Clearing (See 1.7).

All EMAPI messages to and from RTC are encoded using the TagWire encoding format
(please refer to the EMAPI TagWire document for the specifications for the encoding).

1.5 Intended Audience

The information in this document is intended for software developers writing EMAPI interfaces
to RTC.

1.6 Typographical Conventions

EMAPI messages or enumerations are shown in upper camel case using the courier new

font and are hyperlinked to their detailed definitions in Appendix A. For example:
TaxLogonReq or TaxSnapshotSubscribeReq.

EMAPI fields are shown using the courier new font in lower camel case. For example:

requestType or flow.

Note: For ease of navigation of the document using the hyperlinks, please ensure you have the
Previous View (Alt + Left Arrow) and Next View (Alt + Right Arrow) buttons enabled on the page
navigation toolbar of Adobe Acrobat or the equivalent in other PDF viewers (if availalble).

9 Page 7 / 76

1.7 Related Documents

Note: The documents in the table below are published on the ITaC website:
https://www.jse.co.za/services/itac#PostTradeDocumentation

Name Description

Volume PT02 – Post-trade EMAPI
Clearing.pdf

Describes the semantics and syntax of the clearing or
application messages of the EMAPI protocol.

EMAPI TagWire.pdf Describes the syntax of the TagWire encoding of
EMAPI messages body.

EmapTransactionsForMember.xml XML definition of all EMAPI protocol messages for
market participants, i.e. clearing and trading members.

EmapiTransactionsForMember.html HTML file describing the syntax of all EMAPI protocol
messages for market participants i.e. clearing and
trading members.

EmapiTransactionsForMemberRevHist New HTMLfile describing the revision history of
changes to EMAPI specifications between RTC
releases.

EmapiTransactions.xsd The XML Schema that
EmapiTransactionsForMember.xml must conform to.

1.8 Contact Details

JSE Limited

One Exchange Square

Gwen Lane, Sandown

South Africa

Tel: +27 11 520 7000

www.jse.co.za

Post Trade and Information Services

ITAC Queries

Email: CustomerSupport@jse.co.za

Clearing specifications disclaimer
Disclaimer: All rights in this document vests in the JSE Limited (“JSE”) and Cinnober Financial
Technology AB (publ) (”Cinnober”). Please note that this document contains confidential and sensitive
information of the JSE and Cinnober and as such should be treated as strictly confidential and proprietary
and with the same degree of care with which you protect your own confidential information of like
importance. This document must only be used by you for the purpose for which it is disclosed. Neither
this document nor its contents may be disclosed to a third party, nor may it be copied, without the JSE's
prior written consent. The JSE endeavours to ensure that the information in this document is correct and
complete but do not, whether expressly, tacitly or implicitly, represent, warrant or in any way guarantee
the accuracy or completeness of the information. The JSE, its officers and/or employees accept no liability
for (or in respect of) any direct, indirect, incidental or consequential loss or damage of any kind or nature,
howsoever arising, from the use of, or reliance on, this information.

https://www.jse.co.za/services/itac#PostTradeDocumentation
https://www.jse.co.za/content/JSETechnologyDocumentItems/Volume%20PT02%20-%20Post-Trade%20EMAPI%20Clearing.pdf
https://www.jse.co.za/content/JSETechnologyDocumentItems/Volume%20PT02%20-%20Post-Trade%20EMAPI%20Clearing.pdf
http://www.jse.co.za/
mailto:CustomerSupport@jse.co.za

9 Page 8 / 76

1.9 Definitions, Acronyms and Abbreviations

EMAPI External Messaging API. EMAPI is the API used to integrate a client application
or backend system with the RTC Clearing System.

cCran An administration front-end for the RTC clearing system.

cDew A monitoring front-end for the RTC clearing system.

Client A client that connects to RTC Servers using the EMAPI protocol.

RTC Real-time Clearing. The JSE implementation of Cinnober TradeExpress™
clearing system.

Server RTC server that supports the EMAPI protocol. For example, the TAX (Trading
Application Multiplexer) Server.

9 Page 9 / 76

2 OVERVIEW

This document describes the semantics of the EMAPI protocol and the syntax of the common
or session/admin EMAPI messages. The common part of the protocol is shared by all
functional or business parts of the protocol used in the JSE post-trade Real-time Clearing
System (RTC).

Note: Volume PT02 – Post-trade EMAPI Clearing describes the semantics and syntax of the clearing
or application messages of the EMAPI protocol

Note: The complete EMAPI syntax is described in the related documents
EmapiTransactionsForMember.xml, EmapiTransactionsForMember.html and
EmapiTransactions.xsd (See1.7).

2.1 EMAPI Overview

EMAPI, short for External Messaging API, is an API used to integrate a client application or
backend system with RTC. EMAPI is a relatively low-level API whereby carrying out a
business function may require several API calls. EMAPI also contains functionality for setting
up subscriptions to system events that a client needs to process in order to get the full picture
of the current market status.

2.2 Data Communication

EMAPI is a TCP/IP based API where the client connects to the RTC Server and authenticates
with a supplied user ID and password. Once the session is established and authenticated, the
client may use the available API functions to perform business tasks, subscribe to events, etc.

The API is asynchronous so the client application must map responses to outstanding
requests to be able to determine the outcome of a certain command.

2.3 RTC System Architecture

The diagram below depicts a high-level RTC architecture, with its main sub-components and
how it interfaces with other systems.

Figure 1 - RTC Architecture Overview

9 Page 10 / 76

The RTC system provides two EMAPI interfaces:

 TAXM is used by JSE members to interface to RTC. This document deals with the API

provided by this interface.

 TAXI is used internally by the JSE to connect the Trading System and other JSE Internal

Systems to RTC. This interface is not available to JSE members.

RTC provides the following two front-ends that will be used exclusively by the JSE:

 cCran to administer the system, and

 cDew to monitor system status.

The RTC sub-components TAXM, TAXI, CD, BDX, Positions, Settlement, Risk, and Market
Data are further described below.

2.3.1 Trade Application MultipleXer (TAXM, TAXI)

TAX stands for Trade Application MultipleXer. TAX is the first point of contact in RTC.

The JSE members will connect to the TAXM component. This interface has the following key
functions:

 Receive messages using EMAPI protocol.

 Apply validation and embellishment on the messages.

 Reject erroneous messages with adequate responses.

 Route successful messages to the relevant internal RTC components depending on the
message type.

2.3.2 Common Data (CD)

Common Data (CD) is a reference data component. Reference data within the CD component
will be updated by JSE internal systems and published to other RTC sub-components. CD
does not store historical reference data. Clients will be able to subscribe to some of this
reference data via the TAXM interface.

2.3.3 Broadcast Bus (BDX)

Broadcast Bus (BDX) is used for publishing of data within RTC between the various internal
components. BDX is not accessible directly by external components, but message flows in
BDX are made accessible through the TAX.

2.3.4 Position Manager Component

The Position Manager (PM) comprises of trade (i.e. deal management). The PM component
can receive requests from three key sources, namely Members via an external front end, JSE
via the cCran front end, or JSE Integration Layer.

The PM component can be partitioned based on instrument groupings. This means that the
request received from all three key sources will be routed to the same PM components for the
various instrument groups.

2.3.5 Settlement Component

The settlement components gets trades and position updates from the Position Manager. The
component then uses these messages to extracts all the payments and updates the members
accounts based on the deals per member or per client. All settlement messages will be
directed to Strate via the JSE integration layer. RTC will send these settlement instructions to
JSE integration via EMAPI. JSE integration will generate the SWIFT message and send these
instructions to Strate.

9 Page 11 / 76

2.3.6 Risk Component

The Risk component performs risk calculations in real-time. Risk is calculated after the
positions are updated. The risk component receives trade and position updates from the
Position Manager component.

2.3.7 Market Data Component

The Market Data component receives external market data. The price engine is a component
within the Market Data component that calculates various market related prices such as Mark-
to-Model (MTM) prices. The Market Data Gateway within the Market Data component is a
gateway within the RTC system for internal communications.

Note: Market data is published on the Market Data Event Flow. Please see Section 7 Subscriptions

for details on how to subscribe to market data.

9 Page 12 / 76

3 EMAPI VERSIONING

EMAPI has the following version numbers:

 majorVersion: An increase of this number implies that the EMAPI protocol has been

changed in a fundamental way. For example, the client/server interaction model has
changed.

 minorVersion: An increase of this number implies that the EMAPI protocol has been

changed in a non-compatible way. For example, mandatory messages/fields have been
added and/or messages/fields have been removed.

 microVersion: An increase of this number implies that the EMAPI protocol has been

changed in a compatible way. For example, non-mandatory messages/fields have been
added.

Note: The EMAPI version numbers used in the RTC installation is specified in the related documents
EmapiTransactionsForMember.xml and EmapiTransactionsForMember.html (See 1.7)

The server verifies that the client's version is compatible with the version that the server has
implemented. If the client's implemented version is not compatible with the server's
implemented version, the session establishment (see 6.2) will fail.

A single version of EMAPI will be live in RTC at all times; therefore, any changes to the EMAPI
version, irrespective of whether the changes are micro, minor or major, require clients to
conform to that particular version of EMAPI.

Note: The JSE will communicate to clients the conformance requirements for each version.

9 Page 13 / 76

4 MESSAGE HEADER

4.1 Message header

Each EMAPI message starts with a header as detailed below:

Name Position Length Description

magicSign 0 4 Will be set to “XMMA” (0x58 0x4D 0x4D 0x41).

headerVersion 4 2 Will be set to “10” (0x31 0x00).

msgSize 6 6 Message size in bytes excluding this header. ASCII
encoded. Example: “000100” means that the length of
the message excluding this header is 100 bytes.

clientTxRef 12 4 Client assigned request ID. Binary network byte order.

A response sent back by server will contain the same
value as set in the request.

In case the request is a subscription request, all events
resulting from this subscription (as well as the
subscription response) will contain the same value as
set in the subscription request.

msgType 16 1 Message type:

 ‘R’ (0x52): request sent by the client/response

sent by the server.

 ‘B’ (0x42): event sent by the server that is not

part of a snapshot or replay.

 ‘S’ (0x53): event sent by the server that is

part of a snapshot.

 ‘H’ (0x48): event sent by the server as part of

a replay.

Note: ‘M’ (0x4D): multicast event retransmitted

on an EMAPI session.
Not used in the RTC configuration for JSE.

contentType 17 1 Encoding used for the message body following this
message header:

 ‘W’ (0x57) = TagWire

Note: The TagWire encodings are described in the
EMAPI TagWire document (see 1.7).

compressed 18 1 Compressed message body flag:

 ‘Y’ (0x59) = Compressed message body

 ‘ ‘ (0x20) = Uncompressed message body

Note: RTC does not support compression. If a
message is sent compressed it will be rejected
by RTC.

 19 1 Reserved. Will be set to ‘ ’ (0x20)

9 Page 14 / 76

Table 1 - EMAPI Header

4.1.1 Setting a unique ClientTxRef

Setting a unique ClientTxRef for each request allows each request to be linked to its
corresponding response which has the following benefits:

a) The client can handle failed responses and respond appropriately e.g. Re-send requests

that have failed, identify which step in a process failed e.g. adding a non-resident client.

b) The client can identify the requests for which a corresponding response was not returned.

c) When the server concurrently processes several requests from a user, the responses to

the requests might not be received by the client in the same order as the client sent in the

requests.

d) Certain requests have a generic response message which is applicable to different types

of requests which makes linking of the request to the response near impossible.

9 Page 15 / 76

5 MESSAGES

All interaction between a client and a server is done using messages. All the messages syntax
is specified in the related documents EmapiTransactionsForMember.html,
EmapiTransactionsForMember.xml and EmapiTransactions.xsd (See 1.7).

Note: For convenience, the message definitions from EmapiTransactionsForMember.html used in this
document are available in this document via hyperlinks to Appendix A- Message Formats.

5.1 Message Types

The following message types are available through EMAPI:

Message Type Description

Request Messages sent by a client to a server requesting RTC to perform one or

several tasks. Requests are named <task>Req. For example,

TaxLogonReq.

Response Messages sent by a server to a client delivering the response to a previous
request. The normal response for a request is specified in message

specifications but usually has the <task>Rsp format. For example,

TaxLogonRsp.

Note: Two general response messages are possible: ResponseMessage is

used for fundamental errors; SimpleRsp is used as a general

response where no specific information is needed in the response and
for some general errors.

Note: All requests to RTC should be able to handle these two general
response messages. The status code should be used to validate
execution; this is independent of the response type.

Event Messages sent by a server to a client to inform about events that have taken
place in RTC. A client only receives events that it has subscribed to. See
Section 7 for information regarding what information all events contain.

Table 2 - EMAPI Message Types

5.2 Message Responses

All response messages contain the following information:

Field Name Description

code
 Ok: Indicates that the server has completed the processing of the

request successfully.

 TaxSessionThrottled: Indicates the same as Ok with the

addition that the request has been throttled by the server, and thus
the processing of the request has been delayed.

 RtcMessageAlreadyProcessed and several other similar codes:

Indicates that the server did not process this request, since an
identical request had already been processed earlier. See section
9.1.1 for a full list of these codes.

9 Page 16 / 76

 Warning:

o Indicates that the request has been successfully performed
but some alert was raised. The alert text will be available in
the Message below.

OR

o Indicates that a request is used to perform several tasks
and RTC has successfully performed some of the tasks but
has failed to perform others. The tasks that have failed will
be signalled in the subCode below.

 TaxGateletFailure: Indicates that the request might have been

lost due to a failover between RTC internal servers. The request
must be handled in the same way as outstanding requests at
session recovery (i.e. the client must resend the concerned request

with the possDup (=possible duplicate) field set. See section 9.1 for

more information.

 All other values are indicating that the server has failed to process
the request.

subCode

Used when the request is to perform several tasks and the above code

value returned is warning. The position of the subCode corresponds to

the position of the task in the request message. For example:

Note: The JSE will not be using subCode.

Message

A text description explaining in more detail why the request failed or
resulted in a warning.

Note: If the code is Ok the string will be “Ok”.

Note: Other responses such as SimpleRsp or CdResponse may contain other key fields such reply

and latestSSN respectively. Please see message specifications for more details.

5.3 Bookmarking or Pagination

For some messages (e.g. GetPaymentAdvicesReq) the operation can be performed any

number of times. The response is paged (bookmarked), i.e. there will be an indication as to

whether there is more information to be retrieved from RTC.

If the message supports bookmarking, it will have a field named bookmark. The bookmark

marks a specific item in a list of data on the server. The bookmark received in the response

should be used in the next request to get the next page of information.

Note: For the messages that make use of the bookmark field, only send the bookmark field when you
already received a bookmark value in the response message. Do not send the bookmark field
at all (null or blank) if you didn’t receive a bookmark value before,

9 Page 17 / 76

5.4 Primitive Types

5.4.1 Integers

Name Value range (inclusive)

byte -128 to 127 (-27 to 27-1)

short -32 768 to 32 767 (-215 to 215-1)

int -2 147 483 648 to 2 147 483 647 (-231 to 231-1)

long −9 223 372 036 854 775 808 to 9 223 372 036 854 775 807(-263 to 263-1)

BigInteger Arbitrary precision integer (i.e. value range is not applicable).

The types Long and Integer can have the same values as long and int, but can also have a
null value.

5.4.2 Fixed-point number

Specified as an integer (see section 5.4.1) together with a scaling factor, which is the
multiplicative inverse of the specified value of the enumeration DIVISOR.

5.4.3 Boolean

“Boolean” is a logical type that can be either true or false or null.

“boolean” is a logical type that can be either true or false.

5.4.4 String

String is a sequence of Unicode characters.

The maximum length of the string is specified in the message definition. If no length is
specified, the maximum length of the string is 255 characters.

Note: RTC supports by default only a subset of characters with ASCII code points between 0 and
255.The allowed ASCII numbers for characters are 32-128 and 160-255.Derived Scalar Types

5.4.5 Derived Scalar Types

Enumeration types are supported.

5.4.6 Binary Type

Binary type is a sequence of bytes.

5.5 Composite Type

5.5.1 Records

A record is a sequence of fields that are indexed by their name.

 The fields may be of different data types.

 A field is either required or non-required.

Note: A message body is a record.

9 Page 18 / 76

5.5.2 Arrays

An array is a sequence of fields that are indexed by their position. Arrays are specified with

double brackets in the EMAPI message definitions. For example, long[] means an array of

long values.

5.6 Example of Request / Response

In this example, a request GetPaymentAdviceReq to obtain payment advices (See Volume

PT02 – Post-trade EMAPI Clearing for more details) is sent to the TAX server; the server then

responds with a GetPaymentAdviceRsp message.

5.6.1 Sequence Diagram

The following diagram illustrates the typical flow of request-response interaction between a
client and the RTC TAX server using a message to get payment advices.

Figure 2 - Request/Response

Note: possDup=true signals RTC to check the message body in case it's a duplicate, i.e. it does not

pertain to the header fields. Therefore, the clientTxRef field does not have to be the same if

the message is being resent with possDup=true.

Note: ResponseMessage/SimpleRsp can be sent as a "successful" response for request messages

that don't have a defined response message.

5.6.2 Connection to TAX Server

A single session has a single TCP socket; therefore, if the client has multiple requests running
on the same session, responses may be returned out of order. Therefore, the client must
either:

1. Submit requests on a single thread (one TCP socket), or
2. Handle out of order (one TCP socket), or
3. Have multiple sessions (multiple TCP sockets) that each have a single request

thread.

In order to keep the TCP/IP connection alive, heartbeats must be sent to the TAX server at
regular intervals. (See 6.3)

The communication with the TAX server is via asynchronous non-blocking calls; in addition,
the server can run multiple threads in order to process concurrent requests.

9 Page 19 / 76

The TAX server and the EMAPI protocol support low-latency and low-bandwidth utilisation
resulting in near real-time performance.

5.6.3 5.6.2.1 Encrypted Secure TAX-M Connection

JSE will be provisioning an encrypted secure TAX-M connection channel, which will be
available to all Client facing TAX-M environments in stages.

The secure TAX-M connection will take place over TLS versions 1.2 and 1.3.

To secure the transfer of data, TLS uses one or more cipher suites. A cipher suite is a
combination of authentication, encryption, and message authentication code (MAC) algorithms.
The Cipher suites will apply during negotiation of security settings for a TLS connection as well
as for the transfer of data. As such, the below Table 1 Ciphers will be made available on the
secure TAX-M connection.

Client’s frontends must be updated to support the new TLS 1.2 and 1.3 protocol connection.

Note: JSE will be supporting both the unencrypted and the new encrypted channels for TAX-
M connections for a certain period until further notice (as per the July 2019 Hotline).

Table1: TLS Ciphers

Order
Key Exchange

Algorithm
Authentication

Algorithm
Bulk Encryption Algorithm

Mac
Algorithm

#1
Elliptic Curve Diffie–

Hellman (ECDH)

Elliptic Curve Digital
Signature Algorithm

(ECDSA)

AES 256 in Galois Counter
Mode (AES256-GCM)

SHA384

#2
Elliptic Curve Diffie–

Hellman (ECDH)
RSA

AES 256 in Galois Counter
Mode (AES256-GCM)

SHA384

#3
Elliptic curve Diffie–

Hellman (ECDH)

Elliptic Curve Digital
Signature Algorithm

(ECDSA)
ChaCha20 (CHACHA20) POLY1305

#4
Elliptic curve Diffie–

Hellman (ECDH)
RSA ChaCha20 (CHACHA20) POLY1305

#5
Elliptic Curve Diffie–

Hellman (ECDH)

Elliptic Curve Digital
Signature Algorithm

(ECDSA)

AES 128 in Galois Counter
Mode (AES128-GCM)

SHA256

#6
Elliptic curve Diffie–

Hellman (ECDH)
RSA

AES 128 in Galois Counter
Mode (AES128-GCM)

SHA256

#7
Elliptic Curve Diffie–

Hellman (ECDH)

Elliptic Curve Digital
Signature Algorithm

(ECDSA)
AES 256 (AES256) SHA384

#8
Elliptic curve Diffie–

Hellman (ECDH)
RSA AES 256 (AES256) SHA384

#9
Elliptic curve Diffie–

Hellman (ECDH)

Elliptic Curve Digital
Signature Algorithm

(ECDSA)
AES 128 (AES128) SHA256

#10
Elliptic curve Diffie–

Hellman (ECDH)
RSA AES 128 (AES128) SHA256

9 Page 20 / 76

5.6.4 Failure conditions and recovery

The client needs to be able to handle failure conditions and respond appropriately, e.g. by
resending requests. Some failure conditions that are possible include:

 Malformed responses.

 Correlation failure (clientTxRef returned is unknown).

 Error response (expected Response message with error code or ResponseMessage or

SimpleRsp).

 Timeouts.

9 Page 21 / 76

6 ADMIN MESSAGE FLOWS

Interaction between an EMAPI client and a TAX server is done inside one or more user
sessions with the following exceptions:

 when establishing a user session (see section 6.2), or

 changing the password (see section 6.4.1); this may be performed without having a
session established.

If the servers are partitioned over several session types and/or subscription groups (see
section 6.1), a user may need to establish several user sessions with different servers.

6.1 Server Session Types

The following server session types are provided by RTC:

 INTEGRATION_TAX (available to Internal JSE systems only)

 MEMBER_TAX (available to trading and clearing members)

6.2 Session Establishment and Authentication

A session is established by performing the steps described in this section.

6.2.1 Logon

The server that a client will use for a user session is determined from the information provided
by the JSE on user registration.

Immediately after performing a TCP/IP connection, the client must send in a TaxLogonReq.

The request contains for following information (mandatory fields in bold typeface):

Field Name Description

member User's member firm.

user User identification. The user must belong to the member.

password
This is initially provided by the JSE but needs to be changed by
the client on first log on. (see section 6.4.1).

ticket Not used by JSE as pre-logon configuration is not enabled.

possDupSessId

If this session is replacing a previous session in a recovery
scenario, this field should be set to the same value as the

possDupSessionId of the previous session. See section 9.1.1.

majorVersion See section 3.

minorVersion See section 3.

microVersion See section 3.

The response TaxLogonRsp contains following key information1:

Field Name Description

1 In addition to what is provided in all responses – see section 4.

9 Page 22 / 76

logonAccepted Indicates if the logon was successful.

loginStatus

 LOGIN_ACCEPTED: Set when (and only when) above

logonAccepted is set to true.

 WRONG_VERSION: The client and server support different

EMAPI versions that are incompatible.

 INITIAL_LOGIN: At initial logon, the password must be

changed, see section 6.4.1.

 PASSWORD_EXPIRED: The password has expired and

must be changed, see section 6.4.1.

 LOGIN_ACCESS_DENIED: The user does not have access

to the logon service for this application.

 LOGIN_REJECTED: Invalid Member/UserName/Password.

 USER_ACCOUNT_LOCKED: The user is locked (for example,

due to too many erroneous logon attempts or by the JSE).

 USER_ACCOUNT_DISABLED: The user has been disabled

by the JSE.

systemName The name of RTC installation.

isTestSystem Indication whether the installation is a test system or not.

clientHbtInterval The suggested heartbeat interval. See section 6.3.

maxLostHeartbeats The maximum number of hearbeat losses. See section 6.3.

Note: The TaxLogonReq should be sent immediately after the TCP connect, otherwise the session

will be disconnected by RTC.

Note: A user can only have one connection at a time to the system. If the same user tries to log in
again, the first connection will be closed. A system that needs to have several simultaneous
connections to the system (for performance or resilience reasons, or for a functional partitioning
of the user sessions) must have multiple user IDs with the same role.

6.3 Session Surveillance

The client is responsible for sending TaxHeartbeatReq after logging in. A suggested

interval (in seconds) is specified in TaxLogonRsp (see section 6.2.1).

The request contains:

 userData: Client data that will be returned in the response.

The response TaxHeartbeatRsp contains the following information2:

 timestamp: Current local time in the server according to following ISO 8601 format:

YYYY-MM-DDThh:mm:ss.sTZD (for example, 1997-07-16T19:20:30.45+01:00).

 userData: Client data specified in the request.

Note: Other EMAPI requests that are sent by the client do not replace the need to send

TaxHeartbeatReq. Heartbeats must be sent to RTC TAX irrespective of whether there are

2 In addition to what is provided in all responses – see section 5.1.

9 Page 23 / 76

messages flowing through the connection or not. Heartbeats take priority over the transactional
message request being submitted to the TAX server.

The server starts a heartbeat timer after a successful logon. The timer value is set to a value

that is equal or greater than what is specified in TaxLogonRsp, i.e. a value greater than

maxLostHeartbeats * clientHbtInterval. If this heartbeat timer expires, the server

will terminate the session and the TCP connection.

The client must initiate a re-connection or failover when it does not receive a response to a

TaxHeartbeatReq within a configurable time (should be configured in the client based on

the maxLostHeartbeats setting in the TAX server).

Note: The server to fail over to will be provided by the JSE on user registration. Please see Section 9
for more details on recovery and failover procedures.

Note: The maximum retries for requests that fail in RTC will be determined by the JSE and
communicated to clients on enablement.

6.4 Session Processing

This section contains session related information that is not part of the session establishment,
surveillance, recovery or termination.

6.4.1 Change Password

A password may need to be changed for example when the LoginStatus field in

TaxLogonRsp (see section 6.2.1) indicates INITIAL_LOGIN or when the password is about

to expire.

To change a user’s password, the client must submit a ChangePasswordReq. This request

contains the following key fields:

Field Name Description

possDup The possible duplicate flag. See section 9.1.1

member User's member firm.

user User identification. The user must belong to the member.

oldPassword The user's old password; used for authentication.

newPassord The new password to be set.

The server returns a ResponseMessage3 to a password change request.

Please note the following when changing passwords:

 password must contain at least one letter and one number

 password must be at 8 least characters long

 password is only valid for 30 calendar days

 after 3 failed attempts, RTC will lock out the account; clients will need to contact the
JSE to unlock the account

Note: Passwords for the JSE will be managed by the JSE’s authentication and authorisation system.
The user does not need to be logged in to change the password.

3 See section 5.1 for content.

9 Page 24 / 76

6.4.2 Concurrent Processing of User Requests

It is configurable per RTC installation how many requests per user that the server processes
in parallel. To make it possible to match the responses received from the server with the sent

requests, the EMAPI header (See 4.1) contains a clientTxRef field. This field is set by the

client in the header of the request and is returned by the server in the header of the response.

Note: When the server concurrently processes several requests from a user, the responses to the
requests might not be received by the client in the same order as the client sent in the requests.

For a client to correlate requests with responses, the client must set a unique clientTxRef

for each request.

6.5 Session Termination

To terminate a session, submit a TaxLogoutReq to the server.

The response is a ResponseMessage and after that has been received the TCP connection

will be disconnected.

If the session with the server is terminated due to some kind of failure, the client will not be

able to send a TaxLogoutReq. Instead, the client will simply abandon the session and log

on to the server as if it is a new connection being established.

If the session is terminated by the server, the last message published to the client is a

TaxSessionStatus message, indicating the reason for the termination. This is just for

information - the client does not need to act on this message.

6.6 Session Message Sequences

This section describes the sequence of messages when establishing and terminating a
session as well as the required messages to keep the connection alive. For details on failover
message sequences see section 9.

6.6.1 Session Establishment, Surveillance and Termination

The follow sequence diagram illustrates the messages for this scenario:

9 Page 25 / 76

Figure 3 - Logon/Logout

Once a session is established, it must be maintained via heartbeats. clientHbtInterval

specifies the interval (in seconds) that heartbeat requests must be sent.

Specify a unique possDupSessId. In case of failure, a new logon request will use the same

possDupSessId enabling TAX to remove the duplicate session that failed.

Failure conditions:

 Malformed response.

 Correlation failure (clientTxRef returned is unknown).

 Error response (expected Response with error code or ResponseMessage or

simpleRsp).

 Timeout.

Recovery

 Analyse error response.

 Resend request (with possDup=true and original clientTxRef) or,

 Halt and alert.

9 Page 26 / 76

7 SUBSCRIPTIONS

7.1 Broadcast Flows

Whenever a business event occurs, such a deal being allocated or collateral being pledged,
RTC generates event messages. These event messages are grouped into a concept called
Broadcast Flows. Each broadcast flow is configured with the event types that it will publish.

Note: The EMAPI broadcast flows are NOT to be confused with UDP-type multicast broadcasts. The
events published on EMAPI broadcast flows are guaranteed as they are sent via the TCP/IP
protocol and not UDP.

A particular event type will only be sent to one broadcast flow in RTC. The events that are
published on the broadcast flows are described in more detail in Volume 02 – Post-trade
EMAPI Clearing (see 1.7).

A broadcast flow can support replay and/or current value. The following describes each
subscription type:

Subscription Type Description

Replay
It is possible to replay all earlier events that has happened since the
RTC instance was started - see section 9.1.

Current Value It is possible to receive the current state (for example, positions in
an account). The current state may include terminated and inactive
records, as long as they exist in RTC.

The list of broadcast flows that trading and clearing members can subscribe to is listed below:

Broadcast Flow
Current
Value
(Y/N)

Replay
(Y/N)

Description and information
sent

PUBLIC_GLOBAL_REFERENCE_DAT

A_FLOW

Yes No4 Reference data events and
Member Client events.

ACCOUNT_EVENT_FLOW Yes Yes Positions and trades.

RISK_EVENT_FLOW Yes Yes Risk calculation results.

GIVEUP_EVENT_FLOW Yes Yes Assign and Tripartite
workflow.

SETTLEMENT_EVENT_FLOW Yes Yes Collateral and payment
information.

MARKET_DATA_FLOW Yes No5 Market data events.

The broadcast flows do not go offline. The API user can connect and do replay as long as the
system is up and running.

4 To get missed data, issue a current value request to get lastest reference data.
5 To get missed data, issue a current value request to get lastest market data.

9 Page 27 / 76

7.2 Subscription Groups

Messages on flows from RTC are associated with a SubscriptionGroup. The subscription

group has a numeric ID.

The subscription group is used to restrict the messages received on the flow. This restriction
exists for two reasons:

 A subscriber may not be allowed to receive all information from the system, but is
restricted to view one or more subscription groups.

 A subscriber may want to subscribe to less information than they are allowed to view, for
performance reasons. This would be done by choosing to subscribe to specific
subscription groups and not all subscription groups the subscriber is allowed to view.

7.2.1 Sequence Number

Each event on a flow that supports replay has a sequence number. Events on flows that only
support current value and not replay are not sequenced. The sequence number is unique per:

 Broadcast Flow, and

 Subscription Group, if the flow is divided into different subscription groups.

The sequence numbers are positive integers and increases by 1; a gap in the sequence
numbers should be treated as an error.

Events received as part of a current value (snapshot) when setting up a current value
subscription, are assigned a dummy sequence number. Any real-time events following the
snapshot will be sequenced. This only applies to flows that support current value and replay.

The reference data flow does not support replay, and its events are not sequence numbered.

7.2.2 Information in Events

All events on replayable flows contain the following information:

 sequenceNumber: See section 7.2.1.

 subscriptionGroup: Present in events sent on flows on which RTC sends events on

different subscription groups. See section 7.3.1.

7.2.3 Finding the Latest Sequence Number

It is possible to find the latest published sequence number on a broadcast flow by using the

GetSequenceNumbersReq request. A client specifies the broadcast flow and subscription

group in the request. The response GetSequenceNumbersRsp contains the latest sequence

number for this broadcast flow and subscription group. This can be useful to verify that there
are no more messages that need to be recovered.

7.3 Subscription Establishment

When setting up a subscription or replay (using TaxSnapshotSubscribeReq or

TaxReplayReq), the EMAPI client specifies the flow and subscription group. If the client

wants to receive information from several subscription groups on that flow, one subscription
must be set up for each subscription group. There may be several simultaneous subscriptions
active on the same EMAPI session.

The system validates that the logged in user is allowed to view the information for the specified
subscription group. If not, the subscription request is rejected. Once the subscription request
has been accepted, there is normally no further access validation; every message for that
subscription group is forwarded to the client.

9 Page 28 / 76

To make it possible to match the events and framing messages received from the server with

a subscription, the EMAPI header contains a clientTxRef field (see section 4.1) that is set

by the client in the header of the subscription request and is returned by the server in the
header of resulting messages (response, framing and event messages).

7.3.1 Finding the Right Subscription Group

An EMAPI client should subscribe to the Reference Data Flow to find their available

subscription groups. A number of SubscriptionGroup reference data objects will be

received, each with a numeric ID and a descriptive text.

Closely related to SubscriptionGroup are the AccessGroups. An AccessGroup is a way

of limiting access on a member level. However, there will also be access groups related to

the Clearing Member(CM) and Trading Member(TM) links. The AccessGroup reference data

object also contains the subscription group ID for the link. The AccessGroup object makes it
easier to identify the CM and TM, instead of interpreting the SubscriptionGroup’s description
text.

Example of SubscriptionGroup reference data received on the EMAPI reference data

flow:

Field Name Value

subscriptionGroupId "1035"

description "CM1_TM1"

accountAccessGroup "CM1_TM1"

Example for AccessGroup:

Field Name Value

accessGroupId "CM1_TM1"

participantUnitId "TM1"

clearingMemberId
"CM1"

subscriptionGroup "1035"

Once an EMAPI client has identified the relevant subscription groups (received on the
reference data flow), they should set up subscriptions to the desired subscription groups.

Messages on the reference data flow do not include a subscription group field; a client always
receives all the reference data it is allowed to view. When setting up the reference data
subscription, it is suggested that subscription group 1 be used in the

TaxSnapshotSubscribeReq, although the value has no meaning for this flow.

7.3.2 Current Value Subscriptions

To get current value events and/or to subscribe to future events, the client sends a

TaxSnapshotSubscribeReq. This message has the following key information:

Field Name Description

flow Data flow being requested. See section 7.1

9 Page 29 / 76

key The subscription group to subscribe to.

requestType

The client specifies one of following operations in the
request:

 CURRENT_VALUE: The server will only send events

containing the current value (framed between

TaxStartSnapshot and TaxEndSnapshot

events).

 SUBSCRIPTION: The server will send real-time

events, but not the current value at that point in time.

 CURRENT_VALUES_AND_SUBSCRIPTION: The

server will send events containing the current value

first (framed between TaxStartSnapshot and

TaxEndSnapshot events) and then continue to send

real-time events.

lastPollSequenceNumber

May only be set if requestType is CURRENT_VALUE. If

the client only fetches current value at certain times the
client shall set this field to the value of the

pollSequenceNumber field of the TaxEndSnapshot

(see below sub section) message previously received. If
the current value hasn’t changed since last time the client
fetched the current value, no events will be received
inside the current value framing.

Note: RTC does not make use of this feature.

member

A user may be configured to be able to subscribe to
private events that are sent to another member. To

subscribe on behalf of the user shall set the member field

in the TaxSnapshotSubscribeReq.

 The response TaxSnapshotSubscribeRspcontains the following key fields6:

Field Name Description

handle Used when unsubscribing, see section 7.4.

Note: The TaxSnapshotSubscribeRsp is returned to the client by the server before any events are

sent. The collection of the current value is done after the delivery of the

TaxSnapshotSubscribeRsp, so events resulting from a request sent by the client after the

reception of TaxSnapshotSubscribeRsp might be part of the current value.

Note: If a client has subscriptions (during the same time) that interleave, the client will receive some

events that are identical (except possibly the clientTxRef field in the header).

6 In addition to what is provided in all responses – see section 5.1.

9 Page 30 / 76

Current value framing

A TaxStartSnapshot message precedes any current value events. This message contains

the follow key information:

Field Name Description

flow See section 7.1

subscriptionGroup See section 7.2.

A TaxEndSnapshot message follows any current value events. This message contains:

Field Name Description

code
Set to Ok if the server has successfully delivered all events

of the current value. All other values are indicating that the
server has failed to deliver all events of the current value.

message

A text description explaining more in detail why the server
has failed to deliver all events of the current value.

Note: If the code is Ok the string will be “Ok”.

subscriptionGroup See section 7.2.

snapshotSize Number of events published in the snapshot.

7.3.3 Replay Subscriptions

To replay events—to recover events that have been sent by the server during times when the
client hasn’t had any subscription—and optionally subscribe to future events, the client sends

a TaxReplayReq (only for a flow that supports replay).

The TaxReplayReq request contains the follow key fields:

Field Name Description

flow See section 7.1

subscriptionGroup See section 7.2.

replayRequestType

Specifies the type of replay. This could be either:

 REPLAY: this is the default if this field isn’t set.

For this type it is configurable per RTC installation how
many events are allowed to be replayed.

If the number of events to be delivered is greater than the
configured number the server will only deliver this

configured number of events and set the nextSequence

field in the TaxReplayEndEvent message.

The client must then initiate a new replay setting the

sequenceNumber field in the TaxReplayReq message

to the value of the field nextSequence in the

TaxReplayEndEvent message received previously.

9 Page 31 / 76

 REPLAY_UNSEGMENTED: the server resends all events

(framed according to the Replay Framing section) from

(but exclusive) the specified sequenceNumber up to

(and inclusive) the specified endSequenceNumber.

 REPLAY_SUBSCRIPTION: the server resends all events

(framed according to the Replay Framing section) from

(but exclusive) the specified sequenceNumber up to the

last sequence number sent by the server and then
continues to send real-time events.

sequenceNumber

The sequence number from (but exclusive this number)
where the replay will start. The client must specify a start
sequence number that must either be:

 0 (zero) if the client hasn’t received any events, for
example, at client start-up.

 The sequence number of the last received event—when
the client has received events earlier, for example, if the
client is recovering after a failover.

 The value of nextSequence field in

TaxReplayEndEvent if the replay events are delivered

in several replays. Only applicable if the replay request

type is REPLAY.

See also section 7.2.1.

endSequenceNumber

May only be set if replayRequestType is REPLAY or

REPLAY_UNSEGMENTED. The sequence number to which the

replay will be done. If not set, the server will replay all events
that it knows of at the time the replay is finished.

member

A user may be configured to be able to subscribe to private
events that are sent to another member. To subscribe on

behalf of the user shall set the member field in the

TaxReplayReq.

 The response TaxReplayRsp7 contains the following additional key field:

 handle: Used when unsubscribing, see section 7.4.

Note: The TaxReplayRsp is returned to the client by the server before any events are sent. The

collection of the replayed events is done after the delivery of TaxReplayRsp, so events

resulting from a request sent by the client after the reception of TaxReplayRsp might be part of

the replayed events.

Note: If a client performs several replays (during the same time) that interleave, the client will receive

some events that are identical (except possibly the clientTxRef field in the header).

Replay framing

A TaxReplayStartEvent message precedes any events that are resent. This message

contains:

Field Name Description

7 In addition to what is provided in all responses – see section 5.1.

9 Page 32 / 76

flow See section 7.1

subscriptionGroup
The subscription group to replay from/subscribe to. See
section 7.2

A TaxReplayEndEvent message follows any replayed events. This message contains:

Field Name Description

code
Set to Ok if the server has successfully replayed all

events. All other values are indicating that the server has
failed to replay all events.

message

A text description explaining more in detail why the server
has failed to replay all events.

Note: If the code is Ok the string will be “Ok”.

subscriptionGroup
The subscription group to replay from/subscribe to. See
section 7.2

nextSequence

Only applicable for REPLAY request type. See the

description of the replayRequestType field in

TaxReplayReq and the section 7.3.4 Synchronise

Subscription/Replay.

Restrictions

It is recommended to only replay from zero at client start-up and during extreme client
situations, for example, client is restarted clean. That is, if a client is required to perform
replay(s) it must:

 Remember the last received sequence number per subscription.

 Set up subscriptions for flows that it may be required to perform replay(s) as early as
possible.

See also section 7.3.3 on replay subscriptions.

7.3.4 Synchronise Subscription/Replay

The client can separately perform replay(s) and subscription establishment to get the same

result as using the REPLAY_SUBSCRIPTION replay request type. In order to do that the client

should:

 replay events using TaxReplayReq with replayRequestType set to
REPLAY/REPLAY_UNSEGMENTED

 set up a subscription using TaxSnapshotSubscribeReq with requestType set to
SUBSCRIPTION

To avoid handling too much live and replayed data at the same time, the client is advised to:

1. Replay events until the nextSequence field isn’t set in the TaxReplayEndEvent

message.

2. Setup the subscription.

9 Page 33 / 76

7.4 Subscription Termination

To terminate a subscription TaxRemoveSubscriptionReq must be sent to the server. This

message contains the following additional key field:

 handle: The subscription handle received in TaxSnapshotSubscribeRsp or in

TaxReplayRsp.

7.5 Subscription Message Sequences

This section contains message sequence examples.

7.5.1 Snapshot Subscriptions

The following sequence diagram illustrates the messages between a client and the TAX
server when requesting a snapshot of Account Event Flow data.

Figure 4 - Event Subscription (snapshot)

Key fields on TaxSnapshotSubscribeReq:

Field Name Description

SubscriptionRequestType 1 = CURRENT_VALUE

Flow 301 = ACCOUNT_EVENT_FLOW

key 6 = (example key)

9 Page 34 / 76

Failure conditions for: TaxSnapshotSubscribeReq/TaxSnapshotSubscribeRsp

 Malformed response.

 Correlation failure (clientTxRef returned is unknown).

 Error response (expected Response with error code or ResponseMessage or

SimpleRsp).

 Timeout.

Recovery

 Analyse error response

 Resend request (with possDup=true and original clientTxRef) or,

 Halt and alert

Note: possDup does not have to be set for resending a TaxSnapshotSubscribeReq, as a

snapshot/query does not update the state of the system. It will be ignored.

Failure conditions for: TaxStartSnapshot / AccountPositionEvent /
TaxEndSnapshot

 Malformed messages.

 Correlation failure on AccountPositionEvents (unknown clientTxRef).

 Timeout waiting for TaxStartSnapshot.

 TaxEndSnapshot not received.

 TaxEndSnapshot snapshotSize does not match the number of events received

in the snapshot/query.

Recovery

 Analyse error response.

 Resend request (with possDup=true and original clientTxRef) or,

 Terminate the session (TaxLogoutReq followed by ResponseMessage) and

reinitiate the session - i.e. logon (TaxLogonReq followed by TaxLogonRsp), and

resend the request.

 Halt and alert.

9 Page 35 / 76

7.5.2 Replay Subscriptions

The following diagram illustrates the flow of messages for subscription replay:

Figure 5 - Replay Subscription

9 Page 36 / 76

Label 1:

TaxReplyReq(clientTxRef=1) has the following values:

Field Name Description

requestType 2 = ‘SUBSCRIPTION’

flow 301 = ACCOUNT_EVENT_FLOW

subscriptionGroup 12 = (example subscription group)

sequenceNumber 0

Label 2:

TaxReplyReq(clientTxRef=2) has the following values:

Field Name Description

requestType 2 = ‘SUBSCRIPTION’

flow 301 = ACCOUNT_EVENT_FLOW

subscriptionGroup 15 = (example subscription group)

sequenceNumber 0

Label 3:

TaxReplyReq (clientTxRef=3) has the following values:

Field Name Description

requestType 2 = ‘SUBSCRIPTION’

flow 301 = ACCOUNT_EVENT_FLOW

subscriptionGroup 16 = (example subscription group)

sequenceNumber 0

Label 4:

These are "live" events that are sent after the TaxReplayEndEvent is sent.

Failure and Recovery Conditions:

a) TaxReplayStartEvent/AccountPositionEvent/TaxReplayEndEvent

Failure conditions:

 Malformed messages

9 Page 37 / 76

 Correlation failure on AccountPositionEvent (unknown clientTxRef)

 Timeout waiting for TaxReplayStartEvent

 TaxReplayEndEvent not received

 Sequence gap (e.g. SubGroup1 Seq3 followed by SubGroup1 Seq5)

Recovery

 Analyse error response

 Resend request (TaxReplayStartEvent) (with possDup=true and original

clientTxRef) or

 Halt and alert.

Recovery (Sequence Gap)

 Terminate replay subscription (TaxRemoveSubscriptionReq)

 Reinitiate the replay subscription; with sequenceNumber = <last successful
sequence for the subscription group with a sequence gap>.

b) TaxReplayReq/TaxReplayRsp

Failure conditions:

 Malformed response

 Correlation failure (clientTxRef returned is unknown)

 Error response (expected Response with error code or ResponseMessage or

SimpleRsp)

 Timeout.

Recovery:

 Analyse error response

 Resend request (with possDup=true and original clientTxRef) or,

 Halt and alert.

7.6 Building a copy of the reference data cache

All reference data objects published on the Reference Data Flow contain a set of fields that
can be used by an EMAPI client to build its own copy of the reference data. An EMAPI client
should examine the ”action” field to determine how the reference data message should affect
the cache. A client can subscribe to an initial snapshot and then apply subsequent updates
(add/update/remove) in order to build an up-to-date copy of the cache.

7.6.1 CACHE_ACTION

The field "action" specifies if the reference data object is added, updated or removed. All
objects published in a reference data snapshot will have the action set to "add". See the

documentation for the CACHE_ACTION enumeration (in the EMAPI message description in
HTML) to find which values should be treated as add, update or remove.

Added reference data objects:

If the action is set to ADD(1) or BOOTLOAD(3), the reference data object has been added to
the cache. All objects published in a reference data snapshot will have the action set to ADD.

9 Page 38 / 76

Updated reference data objects:

If the action is set to UPDATE(2), the reference data object has been updated. The client
should replace the old copy of the object in its cache with the new one.

Removed reference data objects:

If the action is set to any of the four values (4-7) that indicate removal, the client should remove
the reference data object from its cache. RTC will not publish any further updates for this
reference data object. EMAPI clients should treat all four types of removal in the same way.
After a reference data object has been removed, it will not be included in the reference data
snapshot (since the snapshot only contains currently active reference data objects).

Note: For Instrument and TradableInstrument, a message is published with the

IsEnabled flag set to FALSE on rollover of the business day following the ValidToDate.

No message with CACHE-ACTION of remove (values 4 to 7) will be published. After business

rollover, the Instrument and TradableInstrument will no longer be available as

part of a snapshot subscription.

7.6.2 Other fields

The field "cacheId" specifies which of the internal reference data structures in RTC that the

object belongs to. This information is not relevant to an EMAPI client and can be ignored.

The field "uniqueObjectId", if set, is a unique identifier for each reference data object. The

field "key" is the uniqueObjectId for the object's parent object, if the object belongs to a tree
structure. If the object is the root node of a tree, this field has a null value.

The field "stateSequenceNumber" (SSN) is a sequence number for the reference data.

Every update to RTC's reference data increases the stateSequenceNumber.

An EMAPI client should check the SSN of the incoming data on the reference data flow to the
updates of the local cache copy in the correct order.

9 Page 39 / 76

8 RECONCILIATION

EMAPI clients can query the latest sequence number per flow and subscription group using

the GetSequenceNumbersReq message in order to perform end of day reconciliation

between their systems and RTC. The following diagram illustrates the flow of messages for
this scenario:

Figure 6 - Reconciliation

9 Page 40 / 76

Label 1:

TaxReplyReq(clientTxRef=1) has the following values:

Field Name Description

flow 301 = ACCOUNT_EVENT_FLOW

subscriptionGroup 2 = (example subscription group)

sequenceNumber 0

Label 2:

TaxReplyReq(clientTxRef=2) has the following values:

Field Name Description

flow 301 = ACCOUNT_EVENT_FLOW

subscriptionGroup 3 = (example subscription group)

sequenceNumber 0

Label 3:

TaxReplyReq(clientTxRef=3) has the following values:

Field Name Description

flow 301 = ACCOUNT_EVENT_FLOW

subscriptionGroup 4 = (example subscription group)

sequenceNumber 0

Label 4:

These are "live" events that are sent after the TaxReplayEndEvent is sent.

Label 5:

GetSequenceNumbersReq(clientTxRef=10) has the following value:

Field Name Description

broadcastFlowId 301 = ACCOUNT_EVENT_FLOW

subscriptionGroupId 2 = (example subscription group)

9 Page 41 / 76

Label 6:

GetSequenceNumbersRsp(clientTxRef=10) has the following values:

Field Name Description

broadcastFlowId 301 = ACCOUNT_EVENT_FLOW

subscriptionGroupId 2 = (example subscription group)

sequenceNumber 3

Label 7:

GetSequenceNumbersReq(clientTxRef=11) has the following values:

Field Name Description

broadcastFlowId 301 = ACCOUNT_EVENT_FLOW

subscriptionGroupId 3 = (example subscription group)

Label 8:

GetSequenceNumbersRsp(clientTxRef=11) has the following values:

Field Name Description

broadcastFlowId 301 = ACCOUNT_EVENT_FLOW

subscriptionGroupId 2 = (example subscription group)

sequenceNumber 3

Label 9:

GetSequenceNumbersReq(clientTxRef=12) has the following values:

Field Name Description

broadcastFlowId 301 = ACCOUNT_EVENT_FLOW

subscriptionGroupId 4 = (example subscription group)

Label 10:

GetSequenceNumbersRsp(clientTxRef=12) has the following values:

Field Name Description

broadcastFlowId 301 = ACCOUNT_EVENT_FLOW

subscriptionGroupId 4= (example subscription group)

sequenceNumber 2

9 Page 42 / 76

Failure conditions and Recovery

a) GetSequenceNumbersReq / GetSequenceNumbersRsp

Failure Conditions

 Malformed response

 Correlation failure (clientTxRef returned is unknown)

 Error response (expected Response with error code or ResponseMessage or

SimpleRsp)

 Timeout.

Recovery

 Analyse error response

 Resend request (with possDup=true and original clientTxRef) or,

 Halt and alert.

b) Last sequence received

Failure conditions:

 sequenceNumber not equal to last message's sequence number.

Recovery

 If sequenceNumber is less than last message's sequence number (i.e. JSE has more

than what was produced) then halt and alert

 If sequenceNumber is greater than last message's sequence number, then send

TaxReplayReq with relevant SubscriptionGroup and sequenceNumber of

missing message.

9 Page 43 / 76

9 RECOVERY AND FAILOVER

9.1 Session Recovery

The session establishment at failover is done in the same way as initial establishment (see
section 6.2). In the case of disaster recovery, the client should connect to recovery site. The
connectivity details to the failover site are provided to clients on enablement.

9.1.1 Outstanding Requests

An outstanding request is a request that the client has sent but has not received any response
for yet. The recommendation for a maximum response timeout is 5 seconds.

A session may fail after the client has sent in some request(s) but before the client has
received the response(s) to these requests.

A possDup field is available in some messages to indicate if the message is being sent to

RTC as a possible duplicate. In such a case, the client must resend the concerned outstanding

requests with the possDup (=possible duplicate) field set.

If the possDup field is not present in the message, the client must still resend the outstanding

message. For these messages, RTC will perform a duplicate check.

If a request is found which is equal to the resent request with the possDup field set, the server

returns the response either immediately if the request has already been completely served or
when the ongoing request has been completely served. That is, the server will answer with
the same response independently of if the server has received or hasn’t received the request
before.

In some cases, the response code will indicate that a request had been processed before.

The client should treat these response codes in the same way as an Ok, since the request

was successfully processed the first time. The response codes that should be treated as Ok

are:

 RtcSettlement_MESSAGE_ALREADY_PROCESSED

 RtcClearing_INVALID_CLIENT_DEAL_ID

 RtcClearing_DUPLICATE_MOVE_TRADE

 RtcClearing_FOUR_EYES_ALREADY_EXISTS

 RtcClearing_INVALID_FOUR_EYES_STATE

 RtcClearing_INVALID_STATUS

 RtcMessageAlreadyProcessed

The client must only set the possDup field on requests for which the client has not received

any response on an earlier session establishment. This is due to that the possible duplicate
checking in the server adds latency to the transaction.

The number of requests the server keeps for a member and user combination to be used for
possible duplicate checking is limited. This will be provided by the JSE upon user registration.
A client shall never send in more outstanding requests than this number.

Note: possDup=true signals RTC to check the message body in case it's a duplicate, i.e. it does not

pertain to the header fields. Therefore, the clientTxRef field does not have to be the same if

the message is being resent with possDup=true.

Note: Please see Appendix B for details on how to handle outstanding requests for each message.

9 Page 44 / 76

The following diagram illustrates the flow of messages for a recovery scenario:

Figure 7 - Request/Response Recovery

9 Page 45 / 76

9.2 Subscription Recovery

9.2.1 Current Value Subscriptions

After discarding earlier received events, the subscription establishment at failover is done in
the same way as initial establishment - see section 7.3.2

Figure 8 - Current Value Subscriptions

Label 1:

TaxSnapshotSubscribeReq has the following values:

Field Name Description

requestType 2 = ‘SUBSCRIPTION’

flow 301 = ACCOUNT_EVENT_FLOW

subscriptionGroup 6 = (example subscription group)

Label 2:

 Error 1 - snapshotSize=3 expected, but 5 received, or

 Error 2 - Timeout waiting for TaxEndSnapshot message

Label 3:

 Repeat TaxSnapshotSubscribeReq as in Label 1.

9 Page 46 / 76

Failure conditions for: TaxSnapshotSubscribeReq/ TaxSnapshotSubscribeRsp

 Malformed response

 Correlation failure (clientTxRef returned is unknown)

 Error response (expected Response with error code or ResponseMessage or

SimpleRsp)

 Timeout.

Recovery

 Analyse error response

 Resend request (with possDup=true and original clientTxRef) or,

 Halt and Alert.

Note: possDup does not have to be set for resending a TaxSnapshotSubscribeReq, as a

snapshot/query does not update the state of the system. It will be ignored.

Failure condition for: TaxStartSnapshot/AccountPositionEvent/
TaxEndSnapshot

 Malformed messages

 Correlation failure on AccountPositionEvents (unknown clientTxRef)

 Timeout waiting for TaxStartSnapshot

 TaxEndSnapshot not received

 TaxEndSnapshot snapshotSize does not match the number of events received in the

snapshot/query.

Recovery

 Analyse error response

 Resend request (with possDup=true and original clientTxRef) or,

 Terminate the session (TaxLogoutReq followed by ResponseMessage) and reinitiate

the session - i.e. logon (TaxLogonReq followed by TaxLogonRsp), and resend the

request

 Halt and alert.

9.2.2 Replay Subscriptions

The subscription establishment at failover is done in the same way as initial establishment
(see section 7.3.3) with the difference that the earlier last received sequence number is
specified in the request8.

The following sequence diagram illustrates the flow of messages for this scenario:

8 Zero is specified at subscription establishment.

9 Page 47 / 76

Figure 9 - Event subscription recovery

9 Page 48 / 76

Label 1:

TaxReplyReq(clientTxRef=1) has the following values:

Field Name Description

requestType 2 = ‘SUBSCRIPTION’

flow 301 = ACCOUNT_EVENT_FLOW

subscriptionGroup 12 = (example subscription group)

sequenceNumber 0

Label 2:

TaxReplyReq(clientTxRef=2) has the following values:

Field Name Description

requestType 2 = ‘SUBSCRIPTION’

flow 301 = ACCOUNT_EVENT_FLOW

subscriptionGroup 15 = (example subscription group)

sequenceNumber 0

Label 3

Error - Sequence 4 expected, but 6 received 3

Label 4

TaxReplyReq(clientTxRef=1) has the following values:

Field Name Description

requestType 2 = ‘SUBSCRIPTION’

flow 301 = ACCOUNT_EVENT_FLOW

subscriptionGroup 12 = (example subscription group)

sequenceNumber 4

Failure conditions - for TaxReplayReq/TaxReplayRsp

 Malformed response

 Correlation failure (clientTxRef returned is unknown)

 Error response (expected Response with error code or ResponseMessage or

SimpleRsp)

 Timeout.

9 Page 49 / 76

Recovery

 Analyse error response

 Resend request (with possDup=true and original clientTxRef) or,

 Halt and alert.

Failure conditions - for the TaxReplayStartEvent / AccountPositionEvent /

TaxReplayEndEvent

 Malformed messages

 Correlation failure on AccountPositionEvent (unknown clientTxRef)

 Timeout waiting for TaxReplayStartEvent

 TaxReplayEndEvent not received

 Sequence gap (e.g. SubGroup12 Seq3 followed by SubGroup12 Seq5).

Recovery

 Analyse error response

 Resend request (TaxReplayStartEvent) (with possDup=true and original

clientTxRef) or,

 Halt and alert.

Recovery (Sequence Gap)

 Terminate replay subscription (TaxRemoveSubscriptionReq)

 Client reinitiates the replay subscription, with sequenceNumber = <last successful

sequence for the subscription group with a sequence gap>.

9.2.3 Failover

The JSE will provide clients with details regarding disaster recovery failover servers such as
IP addresses. The following diagram illustrates the flow of messages for a failover scenario:

Note: The JSE is still working on the final aspects of Disaster Recovery; this will be confirmed in due
course once the final design is finalised.

9 Page 50 / 76

Figure 10 - Failover and recovery

9 Page 51 / 76

APPENDIX A – MESSAGE FORMATS

Note: This Appendix contains the common or administration messages in EmapiTransactionsForMember.html for

ease of reference in the document via hyperlinks. Please refer to the complete set of technical specification
documents published on the ITaC website: https://www.jse.co.za/services/itac.

Note: The message definitions in this appendix always reflect the most recent version of EMAPI - for a view of
what has changed since the last update, please refer to the EmapiTransactionsRevHistForMember file(s)
published on the ITAC Website under the EMAPI Revision History Versions section.

Version 1.342.0 (Build: not released)

Messages
- by type
- by ID
Constants
Status codes

General Messages

CdResponse
ChangePasswordReq
GetSequenceNumbersReq
GetSequenceNumbersRsp
ResponseMessage
SimpleRsp
TaxEndSnapshot
TaxHeartbeatReq
TaxHeartbeatRsp
TaxLogonReq
TaxLogonRsp
TaxLogoutReq
TaxRemoveSubscriptionReq
TaxReplayEndEvent
TaxReplayReq
TaxReplayRsp
TaxReplayStartEvent
TaxSessionStatus
TaxSnapshotSubscribeReq
TaxSnapshotSubscribeRsp
TaxStartSnapshot

General Messages (Internal)

CdRequest
RequestMessage

Reference Data Messages

AccessGroup
Member
SubscriptionGroup

https://www.jse.co.za/services/itac
https://www.jse.co.za/services/itac.

9 Page 52 / 76

Message: CdResponse

Message: CdResponse

Message ID: 227

Type: General Messages

Description: A response to be used as super class for all responses from CD.

Field
no.

Field name
(tag)

Mand.
Type (max
length)

Comment

1 code int
Status code. Code 3001 indicates that the request was processed
successfully. For other codes, see the Status Code list in the EMAPI
HTML description.

2 message String A textual description of the status code above.

3 subCode int []
Status code for each leg of the request. Only used for batched
requests.

5 latestSSN long
This is the latest and most likely the highest state sequence number,
SSN, that has been assigned to the reference data.

Message: ChangePasswordReq

Message ID: 126

Type: General Messages

Description: A request to change the current password. The user does not have to be logged in in order to

change the password.

Field
no.

Field name
(tag)

Mand.
Type (max
length)

Comment

1 possDup boolean The possible duplicate flag

12 memberId String
The id of the user's member (firm). Required because
usernames are only unique within a member firm.

13 userId String The identification of the user (username).

14 oldPassword String The user's old password, used for authentication.

15 newPassword String The new password to be set.

This request will normally return a response of type CdResponse .

Message: GetSequenceNumbersReq

Message ID: 10430

Type: General Messages

Description: Get sequence numbers for broadcast flows.

Field
no.

Field name (tag) Mand.
Type (max
length)

Comment

9 Page 53 / 76

6 broadcastFlowId required int Broadcast Flow requested.

7 subscriptionGroupId required int
Request sequence number for this subscription
group.

This request will normally return a response of type GetSequenceNumbersRsp .

Message: GetSequenceNumbersRsp

Message ID: 10431

Type: General Messages

Description: Response to a GetSequenceNumbersReq request.

Field
no.

Field name (tag) Mand.
Type (max
length)

Comment

1 code int
Status code. Code 3001 indicates that the request was
processed successfully. For other codes, see the Status Code
list in the EMAPI HTML description.

2 message String A textual description of the status code above.

6 sequenceNumber long
Latest sequence number for the requested broadcast flow and
subscription group.

7 broadcastFlowId int Broadcast Flow.

8 subscriptionGroupId int Subscription group.

Message: ResponseMessage

Message ID: 230

Type: General Messages

Description: General response for request messages that dont't have a defined response. It may also be used

when a fatal error occurs before or during the normal response handling on the server.

Field
no.

Field name (tag) Mand.
Type (max
length)

Comment

1 code int
Status code. Code 3001 indicates that the request was
processed successfully. For other codes, see the Status Code
list in the EMAPI HTML description.

2 message String A textual description of the status code above.

3 subCode int []
Status code for each leg of the request. Only used for batched
requests.

5 messageReference String
The message reference from the corresponding
RequestMessage.

Message: SimpleRsp

Message ID: 231

Type: General Messages

Description: General response for request messages that dont't have a defined response.

9 Page 54 / 76

Field
no.

Field name
(tag)

Mand.
Type (max
length)

Comment

1 code int
Status code. Code 3001 indicates that the request was processed
successfully. For other codes, see the Status Code list in the EMAPI
HTML description.

2 message String A textual description of the status code above.

3 subCode int []
Status code for each leg of the request. Only used for batched
requests.

5 reply String Generic single string reply

Message: TaxEndSnapshot

Message ID: 73

Type: General Messages

Description: Message ending a snapshot response

Field
no.

Field name (tag) Mand.
Type (max
length)

Comment

1 code int The overall status

2 message String Complementary text for extra context-dependent info

3 subCode int [] Subcodes

4 flow Integer
If this message is the result of a snapshot/subscribe
operation on a flow then this field contains the flow id.

5 pollSequenceNumber Long Not used in this configuration of RTC.

6 subscriptionGroup Integer
Identifying group of instruments in a current value response
if applicable, otherwise zero

10008 snapshotSize Long Number of items published in snapshot

Message: TaxHeartbeatReq

Message ID: 75

Type: General Messages

Description: Heartbeat sent to gateway in order to verify a connection

Field
no.

Field name
(tag)

Mand.
Type (max
length)

Comment

2 userData String
User supplied data. The data is returned in the
response.

This request will normally return a response of type TaxHeartbeatRsp .

Message: TaxHeartbeatRsp

Message ID: 76

Type: General Messages

Description: Response returned from gateway

9 Page 55 / 76

Field
no.

Field name
(tag)

Mand.
Type (max
length)

Comment

1 code int
Status code. Code 3001 indicates that the request was processed
successfully. For other codes, see the Status Code list in the EMAPI
HTML description.

2 message String A textual description of the status code above.

3 subCode int []
Status code for each leg of the request. Only used for batched
requests.

5 reply String Generic single string reply

6 timestamp String
Current central system time. The format is "yyyy-MM-
ddTHH:mm:ss.SSS". Example: 2009-07-16T19:20:30.045

7 userData String User-supplied data from the request

Message: TaxLogonReq

Message ID: 63

Type: General Messages

Description: Request to the gateway to log in a member/user

Field
no.

Field name
(tag)

Mand.
Type
(max
length)

Comment

2 member required String User's member firm

3 user required String Mandatory user id. The user must belong to the member.

4 password required String User's password

5 ticket Long Ticket received at pre-login

6 possDupSessId Integer

Possible duplicate session id. If two sessions (that is, users) have
the same possDupSessId it means that an unacknowledged request
on one of the sessions can be resent on the other with the possDup
flag set and the system will be able to resolve if it is a duplicate or
not. Not used in this configuration of RTC.

7 majorVersion int
EMAPI major version. If any of the version fields is non-zero, the
gateway will validate against the current EMAPI version.

8 minorVersion int
EMAPI minor version. If any of the version fields is non-zero, the
gateway will validate against the current EMAPI version.

9 microVersion int
EMAPI micro version. If any of the version fields is non-zero, the
gateway will validate against the current EMAPI version.

This request will normally return a response of type TaxLogonRsp .

Message: TaxLogonRsp

Message ID: 64

Type: General Messages

Description: Sent from the gateway to the client as a response to TaxLogonReq.

Field
no.

Field name (tag) Mand.
Type (max
length)

Comment

9 Page 56 / 76

1 code int
Status code. Code 3001 indicates that the request was
processed successfully. For other codes, see the Status Code
list in the EMAPI HTML description.

2 message String A textual description of the status code above.

3 subCode int []
Status code for each leg of the request. Only used for batched
requests.

5 reply String Generic single string reply

6 logonAccepted Boolean Indicates whether the login was successful or not.

7 loginStatus int Login specific status code.

8 isTestSystem Boolean Indicates whether this system is a test system or not.

9 systemName String The name of the system.

10 partitionHbtInterval Integer
The interval (in seconds) between partition heartbeats sent from
the system. Partition heartbeats are sent out as Heartbeat
events.

11 clientHbtInterval Integer
The interval (in seconds) between which clients are expected to
send in heartbeats. The client should use the TaxHeartbeatReq
message to send in heartbeats.

12 maxLostHeartbeats Integer
The maximum number of heartbeats to lose before the
connection can be considered to be down.

Message: TaxLogoutReq

Message ID: 65

Type: General Messages

Description: Request from client to gateway in end a session. A simple response is sent as response.

Field no. Field name (tag) Mand. Type (max length) Comment

This request will normally return a response of type SimpleRsp .

Message ID: 71

Type: General Messages

Description: Removes an active subscription. A SimpleRsp is sent as response for this request.

Field
no.

Field
name
(tag)

Mand.
Type (max
length)

Comment

2 handle int
Subscription handle (subscription identifier) identifying the subscription
request to be removed. The handle is received in the response when
setting up the subscription.

This request will normally return a response of type SimpleRsp .

Message: TaxReplayEndEvent

Message ID: 235

Type: General Messages

9 Page 57 / 76

Description: Framing message indicating the end of requested replay data. The TaxReplayEndEvent indicates

the end of a replay sequence.

Field
no.

Field name (tag) Mand.
Type
(max
length)

Comment

1 subscriptionGroup int
The subscription group the data is for. The identifier is always set to
zero for global flows.

2 nextSequence Long

When requesting a replay, the trading system may not deliver the full
sequence in the first call. The application may need to issue multiple
additional requests for retrieving all data. The field "nextSequence"
indicates if all data has been retrieved. If so, the field is NULL.
Otherwise, the field indicates the sequence number to be used when
requesting the next/following batch of replay data.

3 statusCode int EMAPI status code telling if the replay was successful or not.

4 statusMessage String Status text associated with the EMAPI status code returned.

5 internalCode int Not used in this configuration of RTC.

6 flow int The flow the data is for.

Message: TaxReplayReq

Message ID: 232

Type: General Messages

Description: Request message sent to the RTC system to recover a sequence of messages published earlier.

The replay request will recover earlier published messages on a replayable flow. The response back is a simple
response indicating whatever the request was successfully queued to the RTC system. The actual replay data is
delivered as unsolicited events, framed by TaxReplayStartEvent and TaxReplayEndEvent messages.

Field
no.

Field name (tag) Mand.
Type
(max
length)

Comment

2 flow int

Specifies the logical stream of information of a certain type.

Allowed values: see constant group BroadcastFlows

3 subscriptionGroup Integer The subscription group on the subscribed flow.

4 sequenceNumber long
The sequence number from which messages should be
recovered for the specified subscription group and flow.

6 member String

Optional attribute defining the member for which the replay is to
be applied for. Used for on-behalf-of replay. Note that the user
requesting replay for another member must be authorized to do
so. If this attribute is left empty, the logged in user's member is
used.

7 endSequenceNumber long

The sequence number up to which messages should be
recovered for the specified subscription group and flow. The
value for this attribute could be derived from the
TaxSnapshotSubscribeRsp.

8 requestType int

The type of replay request.

Allowed values: see constant group ReplayRequestType

10009 segmentSize Integer Not used in this configuration of RTC.

This request will normally return a response of type TaxReplayRsp .

9 Page 58 / 76

Message: TaxReplayRsp

Message ID: 233

Type: General Messages

Description: Response message sent back for a previously-submitted TaxReplayReq. The TaxReplayRsp

response will not contain the actual data being requested. The response data is delivered to the application
asynchronously.

Field
no.

Field name
(tag)

Mand.
Type (max
length)

Comment

1 code int
Status code. Code 3001 indicates that the request was processed
successfully. For other codes, see the Status Code list in the EMAPI
HTML description.

2 message String A textual description of the status code above.

3 subCode int []
Status code for each leg of the request. Only used for batched
requests.

5 reply String Generic single string reply

6 handle int
Subscription handle identifying the subscription request. The handle is
used when removing the subscription.

Message: TaxReplayStartEvent

Message ID: 234

Type: General Messages

Description: Framing message indicating the start sequence of requested replay data. When issuing a replay

request, the replay data is delivered as unsolicited messages. The TaxReplayStartEvent indicates the start of a
replay sequence.

Field no. Field name (tag) Mand. Type (max length) Comment

1 subscriptionGroup int The subscription group the data is for.

2 flow int The broadcast flow for the start event.

Message: TaxSessionStatus

Message ID: 77

Type: General Messages

Description: Unsolicited message indicating session status.

Field no. Field name (tag) Mand. Type (max length) Comment

1 status int

Session status

Allowed values: see constant group SessionStatus

Message: TaxSnapshotSubscribeReq

9 Page 59 / 76

Message ID: 69

Type: General Messages

Description: Request to retrieve information and/or activate subscription of future updates of the information

specified

Field
no.

Field name (tag) Mand.
Type (max
length)

Comment

2 member String Not used in this configuration of RTC.

3 user String Not used in this configuration of RTC.

4 requestType int

Type of subscription request

Allowed values: see constant group
SubscriptionRequestType

5 flow int

Data flow being requested

Allowed values: see constant group BroadcastFlows

6 key int
Selection key, identifying the data being subscribed to. In
many cases, this is the subscription group.

7 sequenceNumber long Not used in this configuration of RTC.

8 lastPollSequenceNumber Long Not used in this configuration of RTC.

This request will normally return a response of type TaxSnapshotSubscribeRsp .

Message: TaxSnapshotSubscribeRsp

Message ID: 70

Type: General Messages

Description: Response to a subscription request (TaxSnapshotSubscribeReq).

Field
no.

Field name (tag) Mand.
Type (max
length)

Comment

1 code int
Status code. Code 3001 indicates that the request was
processed successfully. For other codes, see the Status Code
list in the EMAPI HTML description.

2 message String A textual description of the status code above.

3 subCode int []
Status code for each leg of the request. Only used for batched
requests.

5 reply String Generic single string reply

6 handle int
Subscription handle identifying the subscription request. The
handle is used when removing the subscription.

7 lastPublishedSeqNo Long Not used in this configuration of RTC.

Message: TaxStartSnapshot

Message ID: 72

Type: General Messages

Description: Message preceding a snapshot response

9 Page 60 / 76

Field
no.

Field name (tag) Mand.
Type (max
length)

Comment

1 subscriptionGroup Integer
Group of instruments in current value response if
applicable, otherwise zero.

2 flow int The broadcast flow for the start event

General Messages (Internal)

Message: CdRequest

Message ID: 226

Type: General Messages

This message can only appear as a sub-object in other messages; it can never be used as a stand-alone
message.

Description: This message is not used in EMAPI.

Field
no.

Field name
(tag)

Mand.
Type (max
length)

Comment

1 possDup boolean The possible duplicate flag

2 member String (64) The member of the user.

3 user String (64)

The responsible user.

 Shall only be set in requests if actingUser is acting on

behalf of another user.

 Otherwise TRADExpress will set it to the actingUser.

6 actingUser String (64)

The user that initiated a request.

 Shall only be set in requests if (and only if) it is a gateway
user that sends the request.

 Otherwise TRADExpress will set it to the user that
established the session on which the request was received
on.

See also the user field.

Message: RequestMessage

Message ID: 237

Type: General Messages

This message can only appear as a sub-object in other messages; it can never be used as a stand-alone
message.

Description: This message is not used in EMAPI

Field no. Field name (tag) Mand. Type (max length) Comment

1 possDup boolean The possible duplicate flag

9 Page 61 / 76

Reference Data Messages

Message: AccessGroup

Message ID: 10051

Type: Reference Data Messages

Description: This object defines an access Group.

Field
no.

Field name (tag) Mand.
Type
(max
length)

Comment

1 key String
Is used to identify the parent object (is set to null if this is the
root object). This field is set by RTC, only set on outgoing
messages on the reference data flow.

2 cacheId String
Is used to identify the reference data cache. This field is set by
RTC, only set on outgoing messages on the reference data
flow.

3 action Integer

Identify the reason for the cache action (CACHE_ACTION), i.e.
if it is an addition of a new reference data object, an update of
an existing object or a removal of an object from the reference
data cache. This field is set by RTC, only set on outgoing
messages on the reference data flow.

Allowed values: see constant group CACHE_ACTION

4 stateSequenceNumber long

A sequence number that is incremented with each reference
data update, i.e. a version number for the cache contents. The
sequence number series is common for all caches. This
means that for a specific cache instance, the sequence
number is not necessarily consecutive (but constantly
increasing). This field is set by RTC, only set on outgoing
messages on the reference data flow.

5 uniqueObjectId String

The id is unique among all objects and may be used to retrieve
a specific instance. Do not however, try to interpret the
contents. This field is set by RTC, only set on outgoing
messages on the reference data flow.

6 timeStamp String
(23)

The date and time of the latest modification for this reference
data object. Format: yyyy-mm-ddTHH.MM.SS.sss. May be null
if the object never has been updated. This field is set by RTC,
only set on outgoing messages on the reference data flow.

8 accessGroupId String The id for the Access Group.

9 participantUnitId String Specifies the parent Participant Unit.

10 clearingMemberId required String The clearing member for the Access group.

11 subscriptionGroup int The subscription group for the Access group.

Message: Member

Message ID: 101

Type: Reference Data Messages

Description: This object represents a member firm and holds all basic member data such as id, full name, mail

addresses and contact persons etc.

9 Page 62 / 76

Field
no.

Field name (tag) Mand.
Type
(max
length)

Comment

1 key String

Is used to identify the parent object (is set to null if
this is the root object). This field is set by RTC,
only set on outgoing messages on the reference
data flow.

2 cacheId String
Is used to identify the reference data cache. This
field is set by RTC, only set on outgoing
messages on the reference data flow.

3 Action Integer

Identify the reason for the cache action
(CACHE_ACTION), i.e. if it is an addition of a new
reference data object, an update of an existing
object or a removal of an object from the
reference data cache. This field is set by RTC,
only set on outgoing messages on the reference
data flow.

Allowed values: see constant group
CACHE_ACTION

4 stateSequenceNumber long

A sequence number that is incremented with each
reference data update, i.e. a version number for
the cache contents. The sequence number series
is common for all caches. This means that for a
specific cache instance, the sequence number is
not necessarily consecutive (but constantly
increasing). This field is set by RTC, only set on
outgoing messages on the reference data flow.

5 uniqueObjectId String

The id is unique among all objects and may be
used to retrieve a specific instance. Do not
however, try to interpret the contents. This field is
set by RTC, only set on outgoing messages on
the reference data flow.

6 timeStamp String (23)

The date and time of the latest modification for
this reference data object. Format: yyyy-mm-
ddTHH.MM.SS.sss. May be null if the object
never has been updated. This field is set by RTC,
only set on outgoing messages on the reference
data flow.

7 memberId required String (64)
The public ID of the participant. This id has to be
unique.

8 fullName required
String
(128)

Complete name of the member firm

10 address String
(255)

Company postal address.

11 Phone String (64) Company phone number.

12 Fax String (64) Company fax address.

13 complianceContact String
(128)

Name of contact person in compliance matters

14 complianceContactPhone String (64) Phone number to the compliance contact person

15 complianceContactMail String
(128)

Mail address to the compliance contact person

16 matchingContact String
(128)

Matching/BackOffice contact person

17 matchingContactPhone String (64)
Phone number to the Matching/BackOffice
contact person

18 matchingContactMail String
(128)

Mail address to Matching/BackOffice contact
person

19 isDisabled Boolean Set to true if this member has been disabled.

9 Page 63 / 76

26 associatedMemberId String
(255)

The parent member, for example the parent of a
trading member branch or a client.

30 memberType Integer

The type of member. N.B. in the documentation
member type is also known as Participant type.

Allowed values: see constant group MemberType

33 validFromDate String (10)
The date from which the member is valid. The
format is yyyy-MM-dd

34 listOfAliases String
(256)

A list of other markets'/exchanges' ID of this
member in the format:
market1:memberid1,market2:memberid2,...
"maket1" is assumed to be a market defined in
the "local" system and is automatically converted
to uppercase, since this is the conversion for
market ids in the system.

39 allowedOnBehalfOfMemberIdList
String
(255)

A comma separated list of Member Ids for which
this member may act on behalf of.

10043 participantUnitType Integer

The type of this participant unit.

Allowed values: see constant group
ParticipantUnitType

10046 isStaff Boolean Is Staff, true or false

10047 isBeneficial Boolean Is Beneficial, true or false

10048 allowClientSubAccounts Boolean Sub accounts are allowed, true or false

10049 vatRegNumber String VAT registration number

10050 bdaCode Integer Broker Deal Account number

10051 Email String Email

10052 country String Country Code, e.g. ZA

10053 isNonResident Boolean
Is Non Resident is true if country for the client is
not equal to ZA

10054 nominatedMember String

MemberId of the nominated member, fulfilling
physical settlement when the actual member is
not in the Equities market. Otherwise, set to the
member itself.

10055 strateCode String
(100)

Code of client or member at CSD.

10056 externalPayment Boolean
If RTC should expect net payment from the JSE
integration layer for this member. Required for
clearing members.

10057 ownTM String
This is set for clearing members only, to indicate
its own trading member.

10058 allowFxCollateral Boolean
This field is mandatory for CMs. If true, RTC will
expect system-to-system communication on size
of FX collateral payments.

10059 allowedMarkets String
A comma-delimited list of market codes that the
client is allowed to have trades and positions in.

10060 waitForCmBalancing Boolean
This field is mandatory for CMs. If true, RTC will
expect the CM to send in a response to a
balancing event.

10061 clientType String

For clients only - type of client. Information to
surveillance. Required for all clients.

Allowed values: see constant group ClientType

10062 idNumber LongString
For clients only - ID number. Required for local
individual clients: Client Type = Individual AND
isNonResident = FALSE

9 Page 64 / 76

10063 passportNumber String
For clients only - Passport number. Required for
foreign individual clients: Client Type = Individual
AND isNonResident = TRUE

10064 companyRegistrationNumber String
For clients only - Company registration number.
Required for all company clients: Client Type =
Company

10065 isProfessional Boolean
For clients only - Information to surveillance.
Required for all clients.

10066 isShariah Boolean
For clients only - Information to surveillance.
Required for all clients.

10067 isDiscretionary Boolean Is Discretionary, true or false

10068 preferredCcy String (3)
Currency used for intraday rebalancing. Needs to
be an eligible FX collateral currency (or ZAR, this
will be the default though).

10069 branchMemberNumber String
For TM branches only. Unique within a TM. Valid
number is between 01 and 99.

10070 cmMessageRef String (5)

For CM only. Mandatory for CM. Number used
when creating settlement instructions. This
number is concatenated into the message
reference no.

Message: SubscriptionGroup

Message ID: 96

Type: Reference Data Messages

Description: The subscription group is used to filter objects on broadcast flows. When a subscription is set up for

a subscription group the system controls the user access rights for that access group.

Field
no.

Field name (tag) Mand.
Type
(max
length)

Comment

1 key String
Is used to identify the parent object (is set to null if this is the
root object). This field is set by RTC, only set on outgoing
messages on the reference data flow.

2 cacheId String
Is used to identify the reference data cache. This field is set
by RTC, only set on outgoing messages on the reference data
flow.

3 action Integer

Identify the reason for the cache action (CACHE_ACTION),
i.e. if it is an addition of a new reference data object, an
update of an existing object or a removal of an object from the
reference data cache. This field is set by RTC, only set on
outgoing messages on the reference data flow.

Allowed values: see constant group CACHE_ACTION

4 stateSequenceNumber long

A sequence number that is incremented with each reference
data update, i.e. a version number for the cache contents.
The sequence number series is common for all caches. This
means that for a specific cache instance, the sequence
number is not necessarily consecutive (but constantly
increasing). This field is set by RTC, only set on outgoing
messages on the reference data flow.

5 uniqueObjectId String

The id is unique among all objects and may be used to
retrieve a specific instance. Do not however, try to interpret
the contents. This field is set by RTC, only set on outgoing
messages on the reference data flow.

6 timeStamp String
(23)

The date and time of the latest modification for this reference
data object. Format: yyyy-mm-ddTHH.MM.SS.sss. May be

9 Page 65 / 76

null if the object never has been updated. This field is set by
RTC, only set on outgoing messages on the reference data
flow.

7 subscriptionGroupId required Integer The business id of the subscription group.

8 description required
String
(255)

A text description of the set of order books contained in the
group.

9 partitionId required Integer The partition this subscription group belong to.

10012 accountAccessGroup String The account access group.

Messages by ID

ID Message name

63 TaxLogonReq

64 TaxLogonRsp

65 TaxLogoutReq

69 TaxSnapshotSubscribeReq

70 TaxSnapshotSubscribeRsp

71 TaxRemoveSubscriptionReq

72 TaxStartSnapshot

73 TaxEndSnapshot

75 TaxHeartbeatReq

76 TaxHeartbeatRsp

77 TaxSessionStatus

96 SubscriptionGroup

101 Member

126 ChangePasswordReq

226 CdRequest

227 CdResponse

230 ResponseMessage

231 SimpleRsp

232 TaxReplayReq

233 TaxReplayRsp

234 TaxReplayStartEvent

235 TaxReplayEndEvent

237 RequestMessage

10051 AccessGroup

Constants
BroadcastFlows
CACHE_ACTION
DIVISOR
LoginStatus
MemberType
ReplayRequestType
RtcState
SchedulerState
SessionStatus
SubscriptionRequestType

Constant group: BroadcastFlows
Description: Defines broadcast flows

9 Page 66 / 76

Constant name Type Value Comment

PUBLIC_GLOBAL_REFERENCE_DATA_FLOW int 11 Global reference data flow.

ACCOUNT_EVENT_FLOW int 301 Account event flow.

RISK_EVENT_FLOW int 302 Risk event flow.

MARKETDATA_EVENT_FLOW int 303 Market Data event flow.

GIVEUP_EVENT_FLOW int 304 GiveUp event flow.

Constant group: CACHE_ACTION
Description: Defined cache actions

Constant name Type Value Comment

ADD int 1 Add to cache EMAPI - interpret as Add

UPDATE int 2 Update cache EMAPI - interpret as Update

BOOTLOAD int 3 Add to cache with bootloader EMAPI - interpret as Add

REMOVE_CACHE_DB int 4

Remove from cache and db, does not remove if there are
references to object. Return status code
ValidationHasReference if referenced. EMAPI - interpret as
Remove

REMOVE_CACHE_DB_FORCED int 5
Remove from cache and db, removes even if there are
references to object. EMAPI - interpret as Remove

REMOVE_CACHE int 6

Remove from cache (does not remove object from db), does not
remove if there are references to object. Return status code
ValidationHasReference if referenced. The isDeleted attribute is
set to BOOLEAN.TRUE EMAPI - interpret as Remove

REMOVE_CACHE_FORCED int 7
Remove from cache (does not remove object from db), removes
even if there are references to object. The isDeleted attribute is
set to BOOLEAN.TRUE EMAPI - interpret as Remove

Constant group: DIVISOR
Description: There are integer/long fields that represent decimal numbers. These need to be divided with the

following constants.

Constant name Type Value Comment

QTY int 1000000 Divisor for quantity field

PRICE int 1000000 Divisor for price fields

INTEREST int 1000000 Divisor for interest fields.

DELTA int 1000000 Divisor for delta fields.

DECIMAL int 1000000 Divisor for decimal value fields.

Constant group: LoginStatus
Description: Provides the result of a login request.

Constant name Type Value Comment

LOGIN_ACCEPTED int 0 The login is accepted.

LOGIN_REJECTED int -1 The login is rejected due to invalid password or invalid user id.

USER_ACCOUNT_LOCKED int -2 User account is locked due to too many erroneous login attempts.

PASSWORD_EXPIRED int -3 The password has expired.

LOGIN_ACCESS_DENIED int -4 User does not have access to login service for this application.

WRONG_VERSION int -5 Client and TAX server versions are not compatible.

INITIAL_LOGIN int -6 Initial login, password must be changed.

USER_ACCOUNT_DISABLED int -7 Account disabled by operational staff.

Constant group: MemberType
Description: Defines the different member/participant types.

Constant name Type Value Comment

MARKETPLACE Integer 1 The Clearing House itself.

MEMBER_UNIT Integer 7

A member unit is a type of member that must be connected to a
parent member, for example to divide an organization into different
departments. Trading Member Branches and Clients are both of
the type MEMBER_UNIT.

9 Page 67 / 76

CLEARING_ONLY_MEMBER Integer 8 A Clearing Member.

TRADING_ONLY_MEMBER Integer 9 A Trading Member.

Constant group: ParticipantUnitType
Description: Participant type. Defines the type of participant a member has in the member tree.

Constant name Type Value Comment

CLEARING_MEMBER Integer 1 Clearing Member.

TRADING_MEMBER Integer 2 Trading Member

CLIENT Integer 3 Client.

TRADING_MEMBER_BRANCH Integer 4 Trading Member Branch.

Constant group: ReplayRequestType
Description: Literals describing the type of replay request

Constant name Type Value Comment

REPLAY int 0 Request to replay specific events; no future updates

REPLAY_UNSEGMENTED int 1
Request to replay specific events without having to issue requests for
new segments

REPLAY_SUBSCRIPTION int 2
Request for unsegmented replay of events up to the latest and for
subsequent subscription to future updates

Constant group: RtcState
Description: System state in RTC.

Constant name Type Value Comment

OPEN String "OPEN" Open.

END_OF_TRADE_MANAGEMENT String "END_OF_TRADE_MANAGEMENT"
Trade management is no
longer allowed.

END_OF_DAY String "END_OF_DAY" End of Day process started.

POST_END_OF_DAY String "POST_END_OF_DAY"
End of Day process
completed.

Constant group: SessionStatus
Description: Session status

Constant name Type Value Comment

FORCED_LOGOFF_BY_NEW_LOGIN int 1
The session has been terminated due a new login with the
same user.

FORCED_LOGOFF_USER_DISABLED int 2
The session has been terminated because the user has
been disabled.

FORCED_LOGOFF_USER_DELETED int 3
The session has been terminated because the user has
been deleted.

FORCED_LOGOFF int 4
User session logout was forced. Caused by an operator
terminating the session.

DISCONNECT int 5 User session disconnected

NORMAL_LOGOFF int 6 Normal user requested logout

Constant group: SchedulerState
Description: State of the scheduler.

Constant name Type Value Comment

NORMAL Integer 1 Normal state during daily operations.

RERUN_EOD Integer 2 This state is used during End of Day rerun.

INTRADAY_MARGIN_CALL Integer 3 This current system state is used during Intraday Margin Call.

REBALANCING Integer 4
This current system state is used during Intraday Collateral
Rebalancing.

Constant group: SubscriptionRequestType
Description: Literals describing the type of subscription request

Constant name Type Value Comment

CURRENT_VALUE int 1 Request for current values only; no future updates

9 Page 68 / 76

SUBSCRIPTION int 2
Request for subscription of future updates only; no
current value

CURRENT_VALUES_AND_SUBSCRIPTION int 3 Request for current values and future updates

9 Page 69 / 76

APPENDIX B – MESSAGE RESUBMITION

ID Message name
User
Action

RTC Response
(Duplicate)

RTC
Response
(Not
Duplicate)

63 TaxLogonReq Client
needs to
re-submit
message
using same
value as
per original
message

Message re-
processed

Message
processed

65 TaxLogoutReq
Client
needs to
re-submit
message
using same
value as
per original
message

Error message
will be raised.
This should NOT
be treated as
OK.

Message
processed

69 TaxSnapshotSubscribeReq Client
needs to
re-submit
message
using same
value as
per original
message

Message re-
processed

Message
processed

71 TaxRemoveSubscriptionReq Client
needs to
re-submit
message
using same
value as
per original
message

Error message
will be raised.
This should NOT
be treated as
OK.

Message
processed

75 TaxHeartbeatReq Client
needs to
re-submit
message
using same
value as
per original
message

Message re-
processed

Message
processed

126 ChangePasswordReq Message
with
PossDup =
TRUE

RTC response
'OK'.

Message
processed

9 Page 70 / 76

ID Message name
User
Action

RTC Response
(Duplicate)

RTC
Response
(Not
Duplicate)

226 CdRequest Message
not used

N/A N/A

232 TaxReplayReq Client
needs to
re-submit
message
using same
value as
per original
message

Message re-
processed

Message
processed

237 RequestMessage Message
not used

N/A N/A

10031 CdAddRtcMemberClientReq Message
with
PossDup =
TRUE

RTC response
'OK'.

Message
processed

10034 CdAddRtcPositionAccountReq Message
with
PossDup =
TRUE

RTC response
'OK'.

Message
processed

10049 AggregateTradesReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10072 CdEnableDisableRtcPositionAccountReq Message
with
PossDup =
TRUE

RTC response
'OK'.

Message
processed

9 Page 71 / 76

ID Message name
User
Action

RTC Response
(Duplicate)

RTC
Response
(Not
Duplicate)

10104 AllocateTradeReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10108 CorrectAllocationErrorReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10110 CorrectPrincipalReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10112 ModifyPositionSubAccountReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10114 AssignTradeReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10127 CdAddRtcMemberClientClearingLinkReq Message
with
PossDup =
TRUE

RTC response
'OK'.

Message
processed

9 Page 72 / 76

ID Message name
User
Action

RTC Response
(Duplicate)

RTC
Response
(Not
Duplicate)

10128 CancelGiveUpReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10130 ApproveGiveUpReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10132 RejectGiveUpReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10134 TripartiteAllocationReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10147 CdUpdateRtcMemberClientReq Message
with
PossDup =
TRUE

RTC response
'OK'.

Message
processed

10148 ModifyTradeSubAccountReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

9 Page 73 / 76

ID Message name
User
Action

RTC Response
(Duplicate)

RTC
Response
(Not
Duplicate)

10152 CdEnableDisableRtcMemberClientReq Message
with
PossDup =
TRUE

RTC response
'OK'.

Message
processed

10186 ExerciseOptionPositionReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10188 AbandonOptionPositionReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10258 QueryTradesReq Client
needs to
re-submit
message
using same
value as
per original
message

Message re-
processed

Message
processed

10267 CdAddCashAccountReq Message
with
PossDup =
TRUE

RTC response
'OK'.

Message
processed

10268 CdUpdateCashAccountReq Message
with
PossDup =
TRUE

RTC response
'OK'.

Message
processed

10273 CdSetMinimumZARLimitReq Message
with
PossDup =
TRUE

RTC response
'OK'.

Message
processed

9 Page 74 / 76

ID Message name
User
Action

RTC Response
(Duplicate)

RTC
Response
(Not
Duplicate)

10293 CdSetTradingMemberRiskLimitReq Message
with
PossDup =
TRUE

RTC response
'OK'.

Message
processed

10294 CdSetClientRiskLimitReq Message
with
PossDup =
TRUE

RTC response
'OK'.

Message
processed

10384 GetRequestsForFXCollateralReq Client
needs to
re-submit
message
using same
value as
per original
message

Message re-
processed

Message
processed

10386 RegisterFXCollateralReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10420 SetCmBalancingStatusReq Client
needs to
re-submit
message
using same
value as
per original
message

Message re-
processed

Message
processed

10442 CdSetTradingMemberAMPercentageReq Message
with
PossDup =
TRUE

RTC response
'OK'.

Message
processed

10443 CdSetClientAMPercentageReq Message
with
PossDup =
TRUE

RTC response
'OK'.

Message
processed

9 Page 75 / 76

ID Message name
User
Action

RTC Response
(Duplicate)

RTC
Response
(Not
Duplicate)

10487 ConfirmWithdrawalsReq Client
needs to
re-submit
message
using same
value as
per original
message

Message re-
processed

Message
processed

10491 GetPaymentAdvicesReq Client
needs to
re-submit
message
using same
value as
per original
message

Message re-
processed

Message
processed

10515 AddCommissionReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10516 CancelCommissionReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10517 RejectCommissionReq Client
needs to
re-submit
message
using same
value as
per original
message

Client must treat
'Error Message'
(as per Section
9.1.1 in Volume
PT01) as ‘OK’ if
part of the set of
error messages
for duplicates.

Message
processed

10527 QueryDividendPaymentFactorsReq Client
needs to
re-submit
message
using same
value as
per original
message

Message re-
processed

Message
processed

9 Page 76 / 76

ID Message name
User
Action

RTC Response
(Duplicate)

RTC
Response
(Not
Duplicate)

10270 GetRiskArrayReq Client needs
to re-submit
message
using same
value as per
original
message

Message re-
processed

Message re-
processed

10301 GetSettlementInstructionsReq Client needs
to re-submit
message
using same
value as per
original
message

Message re-
processed

Message re-
processed

